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Abstract

When a spatial regression model that uses kernel density values as a dependent variable is applied to retail 
business data, a unique model cannot be selected because kernel density values change following kernel 
bandwidths. To overcome this problem, this paper suggests how to use the point pattern analysis, especially the 
L-index to select a unique spatial regression model. In this study, kernel density values of retail business are 
computed by the bandwidth, the distance of the maximum L-index and used as the dependent variable of spatial 
regression model. To test this procedure, we apply it to meeting room business data in Seoul, Korea. As a result, 
a spatial error model (SEM) is selected between two popular spatial regression models, a spatial lag model 
and a spatial error model. Also, a unique SEM based on the real distribution of retail business is selected. We 
confirm that there is a trade-off between the goodness of fit of the SEM and the real distribution of meeting room 
business over the bandwidth of maximum L-index.
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1. Introduction

Retail businesses, which are located on urban space, 
can be presented by geographical points defined in the XY 
coordinates. In this case, a regression model which uses point 
density values as a dependent variable can be introduced in 
order to analyse location determinants of retail businesses 
(Kloog et al., 2009). The point quadrat analysis and the 
kernel density analysis are generally regarded as typical 
methods to estimate point density values. The point quadrat 
analysis divides a targeted space into the same size by a 
grid and calculates the number of points in a grid, while 
the kernel density analysis is a data smoothing technique 
which transforms a sample of point data into a continuous 
surface, indicating the intensity of individual point (Bailey 
and Gatrell, 1995). The point quadrat analysis has been 
used to estimate the density of point features, however, after 
introducing GIS, the kernel density analysis is being widely 

used (Lee, 2008).
The kernel density analysis uses a distance decay 

function for estimating the distance from grid points as 
weighting and therefore kernel density values of points is 
affected by point distribution being able to cause the spatial 
autocorrelation. The spatial autocorrelation means the co-
variation of observations within geographical space. In 
other words, high or low values of an attribute tend to cluster 
within the positive spatial autocorrelation, unlikely to be 
surrounded by neighbours with different values in negative 
spatial autocorrelation (Chi and Zhu, 2008). When the 
spatial autocorrelation occurs at the dependent variable, the 
ordinary least squares (OLS) regression causes violations of a 
basic assumption in error terms: normality, homoscedasticity 
and no spatial autocorrelation (Lee and Sim, 2011). In this 
case, a spatial regression model that is able to consider spatial 
autocorrelation should replace the OLS regression model (Jin 
et al., 2012). Since kernel density values of the dependent 
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variable follow changing in kernel bandwidths, spatial 
regression analysis brings about model selection problem. 
Despite of this problem, previous studies have undergone 
in the selection of a spatial regression model without clear 
criteria (Jin et al., 2012). Since the model selection problem 
is caused by changing in kernel bandwidths, it is important 
to select kernel bandwidth properly. In fact, the significance 
of kernel bandwidth selection during the density analysis has 
been confirmed in previous studies. Diggle (1985) suggested 
that the kernel bandwidth selection was more important than 
the kernel function selection. Brunsdon (1995) argued that the 
kernel bandwidth selection is the most important procedure 
and proposed the adaptive kernel algorithm. Hwang (2004), 
Goodwin and Unwin (2000) and Borruso and Schoier (2004) 
suggested the use of the L-index or 300-500 m as the kernel 
bandwidth in urban studies. In particular, the L-index is 
pretty effective in analysing point distribution pattern and 
therefore has received attention along with development 
of GIS (Lee and Lee, 2013). It has been known that point 
distribution pattern is clearly shown at the kernel bandwidth,  
which is the distance of maximum L-index (Diggle, 1985; 
Hwang, 2004).

This paper aims to suggest a procedure which uses the 
point pattern analysis, especially L-index in order to select 
a unique spatial regression model. To test the procedure, 
we apply the L-index to meeting room business data in 
Seoul, find the distance of the maximum L-index, measure 
kernel density values of points by using the distance as the 
bandwidth, and input the density values as the dependent 
variable of spatial regression models.

2. Methodology

2.1 Spatial regression model

The OLS regression model assumes the error terms are 
independently, identically, and normally distributed. If 
the OLS regression model using kernel density values as a 
dependent variable can be defined as:

2.1 Spatial regression model

defined as:

𝑌𝑌𝑌𝑌 = 𝑋𝑋𝑋𝑋𝑋𝑋𝑋𝑋 + 𝜀𝜀𝜀𝜀 (1)

𝑌𝑌𝑌𝑌 = 𝜌𝜌𝜌𝜌𝜌𝜌𝜌𝜌𝑌𝑌𝑌𝑌 + 𝑋𝑋𝑋𝑋𝑋𝑋𝑋𝑋 + 𝜀𝜀𝜀𝜀 (2)

𝑌𝑌𝑌𝑌 = 𝑋𝑋𝑋𝑋𝑋𝑋𝑋𝑋 + 𝑢𝑢𝑢𝑢

𝑢𝑢𝑢𝑢 =  𝜆𝜆𝜆𝜆𝜌𝜌𝜌𝜌𝑢𝑢𝑢𝑢 + 𝜀𝜀𝜀𝜀 (3)

2.2 Kernel density analysis

�̂�𝜆𝜆𝜆(𝑠𝑠𝑠𝑠) = ∑ 1
𝜏𝜏𝜏𝜏2 𝜅𝜅𝜅𝜅 �

𝑠𝑠𝑠𝑠−𝑠𝑠𝑠𝑠𝑖𝑖𝑖𝑖
𝜏𝜏𝜏𝜏
�𝑛𝑛𝑛𝑛

𝑖𝑖𝑖𝑖=1 (4)

where λ�(s) 

2.3 Kernel bandwidth selection

𝐾𝐾𝐾𝐾�(𝜏𝜏𝜏𝜏) = 𝑅𝑅𝑅𝑅
𝑛𝑛𝑛𝑛2 ∑∑

𝐼𝐼𝐼𝐼ℎ�𝑑𝑑𝑑𝑑𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖 �
𝑤𝑤𝑤𝑤𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖

= 1
𝜆𝜆𝜆𝜆2𝑅𝑅𝑅𝑅

∑∑ 𝐼𝐼𝐼𝐼ℎ�𝑑𝑑𝑑𝑑𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖 �
𝑤𝑤𝑤𝑤𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖

(5)

and 𝜆𝜆𝜆𝜆(= 𝑛𝑛𝑛𝑛
𝑅𝑅𝑅𝑅

)

𝐿𝐿𝐿𝐿(𝜏𝜏𝜏𝜏) = �𝐾𝐾𝐾𝐾(𝜏𝜏𝜏𝜏)
𝜋𝜋𝜋𝜋
− 𝜏𝜏𝜏𝜏 (6)
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where Y is the vector of the dependent variable, the kernel 

density values of point features, X is the matrix of independent 
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. Since a dependent 
variable is likely to show spatial autocorrelation, if Eq. (1) 
is estimated by the OLS regression, spatial autocorrelation 
can be occurred in error terms. Spatial autocorrelation can 
be overcome by a spatial regression model. There are two 
kinds of spatial regression model commonly. One is a spatial 
lag model (SLM) and a spatial error model (SEM). A general 
equation for the SLM is specified as:
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where W denotes a spatial weight matrix, and ρ denotes 
the spatial autoregressive coefficient. For the SLM, spatial 
autocorrelation is modelled by a linear relation between the 
dependent variable Y and the associated spatially lagged 
variable WY (Chi and Zhu, 2008). In contrast, the SEM is 
specified as:
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where λ is the autoregressive coefficient of residuals. For 
the SEM, the spatial autocorrelation is modelled by an error 
term u and the associated spatially lagged error term Wu (Chi 
and Zhu, 2008). In this study, we select the method making a 
matrix based on spatial distance because a point feature does 
not have a polygon-shaped spatial boundary and only has a 
position. The inverse number of a distance between point 
features is used for actual analysis.Using spatial regression 
model, instead of the OLS regression, requires a test for the 
OLS regression errors. Non-normality, heteroscedasticity 
and spatial autocorrelation have to be tested. In general, 
non-normality is tested by Jarque-Berra statistic and 
heteroscedasticity by Breusch-Pagan statistic. For the spatial 
autocorrelation, Lagrange multiplier (LM) test is used with 
following null hypothesis: there is not spatial autocorrelation 
in dependent variables or errors. The LM-Lag static and 
the LM-Error statistic are used for the LM test and the model 
selection criteria, when the optimal model is selected between 
SLM and SEM. If the LM-Lag statistic is only significant, the 
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SLM is selected and if the LM-Error statistic is only significant, 
the SEM is selected (Lee and Sim, 2011).

2.2 Kernel density analysis

The point pattern is defined as a series of locations (s1,s2,…) 
where si is a vector coordinate of the i-th event in a specific 
space, R. An event is a standard term used for the point process 
to distinguish the observed location from a random location 
in R (Diggle, 1983). The simplest statistical model of point 
patterns on space is complete spatial randomness (CSR). The 
CSR means that an event is independently distributed, based 
on the same probability distribution in the target space R. In 
general, a density analysis is used to investigate the presence 
or absence of point pattern. The quadrat analysis and the 
kernel density analysis are popular in measuring density. The 
modifiable area unit problem (MAUP) occurs in the quadrat 
analysis whereas it is eased in kernel density analysis. Thus, 
the kernel density analysis is recently used more often. A 
technique estimating the kernel density is called kernel 
density estimation, which has a general form of the kernel 
estimator in Eq. (4):

2.1 Spatial regression model

defined as:

𝑌𝑌𝑌𝑌 = 𝑋𝑋𝑋𝑋𝑋𝑋𝑋𝑋 + 𝜀𝜀𝜀𝜀 (1)
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Eq. (6) which originally suggested by Ripley (1976), 
redeemed by Cressie (1991). The L-index on CSR distribution 
has the merit of coinciding with the x-axis of a graph due to a 
deducted distance. Diggle (1985) and Hwang (2004) reported 
that a distance of the maximum point of L(τ) is suitable for the 
bandwidth of kernel density.

3. Application and Analysis

3.1 Analysis data

Meeting room business in Seoul is used as the analysis 
data, which are composed of 110 observations (Fig. 1). Most 
businesses were found using the internet NAVER Map and 
DAUM Map from May 6 to 10, 2013. Both physical and 
locational characteristics data of meeting room business was 
compiled by visiting sites, investigating building resisters, 
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collecting data of KOSIS, the small enterprise development 
agency and Seoul institute, and using ArcGIS 10.0.

3.2  Selection of kernel bandwidth using the 

L-index

The kernel density values of meeting room business was 
measured by bandwidth increasing from 100 m to 1500 
m and then, Moran’s I was measured to find the spatial 
autocorrelation. Moran’s I statistic summarizes the global 
clustering of similar values into one index and the range 
is -1 to +1. As it is getting close to +1, positive spatial 
autocorrelation is shown, but as it is getting close to -1, 
negative spatial autocorrelation is shown. In general, a 
case of >+0.3 or <-0.3 is decided to show relatively strong 
autocorrelation (Yim and Lee, 2012). As shown in Fig. 2, 
Moran’s I increases proportional to increasing of kernel 
bandwidth. Especially, kernel bandwidths from 600 m to 
1500 m show strong spatial autocorrelation. The goodness 
of fit of the spatial regression model usually tends to increase 
as global spatial autocorrelation grows. Therefore, if the 
kernel bandwidth is selected only based on goodness of fit, 
the distance of maximum point, 1500 m has to be selected in 
this interval. However, this selection is meaningless because 
there can be larger values anytime.

Crimestat III specialized in point process analysis is used 
to measure the L-index. Fig. 3 shows a graph of L(τ) against 
the distance of meeting room business. As can be seen, L(τ) 
increases up to a distance of 924.6 m whereupon it decreases 
again. It means that meeting room business shows the 

strongest clustering at a distance of 924.6 m.
The kernel density is measured at a bandwidth of 924.6 

m and the result is shown in Fig. 5 (a). The kernel density 
is higher at the downtown Gangnam and Sinchon. Moran’s I 
statistic is 0.3491 and therefore strong spatial autocorrelation 
is confirmed.

3.3  Spatial autocorrelation for OLS regression 

errors

The dependent variable is the kernel density of meeting 
room business which is measured at a bandwidth of 924.6 
m, and independent variables for regression analysis 
are summarized in the Table 1. Both non-normality and 
heteroscedasticity of the OLS regression errors have to be 
identified to apply a spatial regression model. As shown 
in Table 2, the result of Jarque-Bera test does not show the 
normal distribution of errors at the 1% significance level. 
In addition, the result of Breusch-Pagan test shows the 
heteroscedasticity of errors at the 1% significance level. The 
LM-Lag test and The LM-Error test have to be performed to 
select one among spatial regression models, SLM and SEM. 
The p-value of the LM-Lag test is 0.7649, and therefore the 
result is not significant whereas the p-value of LM-Error 

Fig.1. Meeting room business in Seoul, Korea

Fig. 3. L-index change against distance

Distance (m)

Fig. 2. Moran’s I statistic against kernel bandwidth

Bandwidth (m)
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test is 0.049, and therefore the result is significant at the 
5% significance level. The SEM is selected as a final model 
because the spatial autocorrelation is only confirmed in the 
LM-Error test.

3.4 SEM analysis result

The result of the OLS and the SEM application is presented in 
Table 3. A spatial regression coefficient, λ of the SEM is strong 
positive and significant and therefore, spatial autocorrelation is 
confirmed. Pseudo R² instead of R² is computed because the 
SEM is estimated by Maxim Likelihood (ML) estimation. 
Therefore, it is impossible to directly compare the goodness 
of fit of the OLS and the SEM by using R². Instead, Log-
likelihood, Akaike Information Criterion (AIC), and Schwartz 
Criterion (SC) are used to compare two models. In general, 
improvement of model goodness of fit is decided when Log-
likelihood increases and AIC and SC decrease (Anselin, 2005). 
By comparing Log-likelihood, AIC and SC, it was confirmed 
that goodness of fit has been improved by using the SEM.

Coefficients of significant independent variables of 
the SEM can be explained as follows. Gangnam station 
distance and Sinchon station distance have negative effects 
on the kernel density of meeting room businesses. On the 

contrary, commercial facility density, office building density, 
and private institute density have positive effects. In other 
words, kernel density values of meeting room business are in 
inverse proportion to Gangnam station distance and Sinchon 
station distance, but proportionally increase with growing up 
in the commercial facility floor area ratio of a dong of the 
lowest administrative unit in Korea, the office building floor 
area ratio of a dong, and the number of private educational 
institutes. The coefficient of subway distance variable and 

Table 1. Basic statistics of independent variables of OLS and SEM

Independent variables Variable details Mean Std. Dev.
Gangnam station distance A distance from Gangnam station 6479.4 4767.6
Jonggak station distance A distance from Jonggak station 6831.9 3411.1
Sinchon station distance A distance from Sinchon station 7049.3 4785.9

Commercial facility density Commercial facility floor area of dong / dong area 0.5 0.6
Office building density Office building floor area of dong / dong area 0.3 0.5

Private institute density The number of private educational institutes within 300 m 
search-radius 17.1 14.5

Subway distance A distance from a close subway station 335.9 401.5
Frontal road width The width of a frontal road 15.7 12.9

Test Values Probability
Jarque-Bera Test 10.4212 0.0055

Breusch-Pagan Test 22.1725 0.0046
LM-Lag Test 0.0894 0.7649

LM-Error Test 3.8760 0.0490

Table 2. Spatial autocorrelation test for OLS errors

Table 3. Comparing SEM and OLS estimation

Variables
OLS SEM

Coefficient t-value Coefficient t-value
Intercept 16.4716 7.46*** 24.1498 3.46***

Gangnam station 
distance -0.0008 -4.40*** -0.0002 -0.44

Jonggak station 
distance 0.0003 1.08 0.0005 1.42

Sinchon station 
distance -0.0012 -6.11*** -0.0026 -9.00***

Commercial 
facility density 3.2349 2.83*** 4.7046 4.73***

Office building 
density 3.4548 2.40** 4.7584 4.10***

Private institute 
density 0.2464 5.39*** 0.2325 5.95***

Subway distance -0.0003 -0.24 -0.0001 -0.12
Frontal road width -0.0727 -1.65 -0.0447 -1.21

λ 0.915***
R² 0.671 0.750

AIC 698.473 680.205
SC 722.777 704.510

Log-likelihood -340.236 -331.103
Notes: *** and ** are significant at p ≤ 0.01 and p ≤ 0.05, respectively.
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frontal road width variable are not significant. This means 
that the distance of subway station and the width of a frontal 
road have no effects on the kernel density of meeting room 
businesses.

3.5  Evaluation of the methodology

Changes of R2 are analysed by applying SEM to 
intervals more than 600m where spatial autocorrelation is 
observed by Moran’s I. The result is shown in Fig. 4. Like 
Moran’s I in Fig. 2, R2 increases as a bandwidth grows. A 
bandwidth of maximum R2 cannot be identified because 
R2 is monotonically increasing. The distance of maximum 
L-index, 924.6 m, is not the point where R2 is the highest, 
as shown in Fig. 4, however, this bandwidth reveals the 
clustering pattern most clearly. By comparing Fig. 3 and Fig. 
4, we can notice that there is a trade-off between goodness 
of fit of the SEM and the real distribution pattern of meeting 
room business over a distance with the maximum L-index. 
The goodness of fit of the SEM increases proportionally to 
the growth of kernel bandwidths whereas explanation power 
on distribution pattern of meeting room business decreases. 

On the contrary, both the L-index and the goodness of fit 
of the SEM increase in the smaller bandwidth ranges. This 

informs us that the kernel density of bandwidth 1500 m of 
Fig. 5 (b) covers the larger area than bandwidth 924.6 m of 
Fig. 5 (a), but its clustering is weaker.

4. Conclusion

When a spatial regression model has a dependent variable 
using kernel density values, we cannot select a unique 
model because kernel density values of a dependent variable 
change as kernel bandwidth changes. For this reason, this 
paper suggests a procedure using the L-index for selecting 
a unique spatial regression model. To test the procedure, we 
apply spatial regression model to meeting room business data 
in Seoul. As a result, the distance of maximum L-index is 
found and used to measure kernel density as the bandwidth. 
The measured density values are used as a dependent 
variable of spatial regression models. By testing the spatial 
autocorrelation, the spatial error model is turned out to be 
more suitable than the spatial lag model. The selected SEM 
is not a model with the best goodness of fit but with the best 
real distribution pattern.

This study have meaning in that the proposed procedure 
can contribute to finding location determinants of retail 
businesses which have only point features without other 
information. In this study, meeting room business is 
established as point feature data, nonetheless, we can find 
that the density of meeting room businesses is in inverse 
proportion to Gangnam station distance and the Sinchon 
station distance, but proportionally increases with growing 
up in commercial facility density, office building density, 
or private institute density. We expect that the proposed 
procedure will be applied to other commercial businesses.

This study has a limitation in that we test the procedure 
for meeting room business with small observations. Though 
these data include total meeting room business in Seoul, it 
is not sufficient to evaluate the methodology. A follow-up 
study, which analyses large sample data such as coffee shops 
or chain stores, should be needed.
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