참고문헌
- T.B. Benjamin, J.L. Bona, J.J. Mahony, Model equations for long waves in nonlinear dispersive systems, Philosophical Transactions of the Royal Society of London 272(1220)(1972) 47-78. https://doi.org/10.1098/rsta.1972.0032
- D.J. Korteweg, G.de Vries, On the change of form of long waves advancing in a rectangular canal and on a new type of long stationary waves, Philosophical Magazine 39(1895) 422-443. https://doi.org/10.1080/14786449508620739
- M.A. Raupp, Galerkin methods applied to the Benjamin-Bona-Mahony equation, Boletim da Sociedade Brazilian Mathematical 6(1)(1975) 65-77. https://doi.org/10.1007/BF02584873
- L.Wahlbin, Error estimates for a Galerkin mehtod for a class of model equations for long waves, Numerische Mathematik 23(4)(1975) 289-303.
- R.E. Ewing, Time-stepping Galerkin methods for nonlinear Sobolev partial differential equation, SIAM Journal on Numerical Analysis 15(5)(1978) 1125-1150. https://doi.org/10.1137/0715075
- D.N. Arnold, J. Douglas Jr.,and V. Thomee, Superconvergence of finite element approximation to the solution of a Sobolev equation in a single space variable, Mathematics of computation 36(153)(1981) 737-743.
- T. Ozis, A. Esen, S. Kutluay, Numerical solution of Burgers equation by quadratic B-spline finite element, Appl Math Comput 165(2005) 237-249. https://doi.org/10.1016/j.amc.2004.04.101
- E.N. Aksan, Quadratic B-spline finite element method for numerical solution of the Burgers equation, Appl Math Compu 174(2006) 884-896. https://doi.org/10.1016/j.amc.2005.05.020
- A. Hasan, B. Foss, O.M. Aamo, Boundary control of long waves in nonlinear dispersive systems. in: proc. of 1st Australian Control Conference, Melbourne, 2011.
- A. Balogh, M, Krstic, Boundary control of the Korteweg-de Vries-Burgers equation: further results on stabilization and well-posedness, with numerical demonstration, IEEE Transactions on Automatic Control 455(2000) 1739-1745.
-
A. Balogh, M, Krstic, Burgers equation with nonlinear boundary feedback:
$H^1$ stability, well-posedness and simulation, Machematical Problems in Engineering 6(2000) 189-200. https://doi.org/10.1155/S1024123X00001320 - M. Krstic, On global stabilization of Burgers equation by boundary control, Systems and Control Letters 37(1999) 123-141. https://doi.org/10.1016/S0167-6911(99)00013-4
- D.L. Russell, B.-Y. Zhang, Exact controllability and stabilizability of the Korteweg-de Vries equation, Trans Amer Math Soc 348(1996) 3643-3672. https://doi.org/10.1090/S0002-9947-96-01672-8
- C. Laurent, L. Rosier, B.-Y. Zhang, Control and stabilization of the Korteweg-de Vries equation on a periodic domain, Communications in Partial Diferential Equations 35(2010) 707-744. https://doi.org/10.1080/03605300903585336
- J.L. Bona, L.H. Luo, Asymptotic decomposition of nonlinear, dispersive wave equation with dissipation, Physica D 152-153(2001) 363-383. https://doi.org/10.1016/S0167-2789(01)00180-4
- P.M. Prenter, Splines and variational methods, John Wiley and Sons, New York, 1975.
- C.T. Chen, Linear System Theory and Design, Holt, Rinehart and Winston, New York, NY, 1984.
- G.-R. Piao, H.-C. Lee, J.-Y. Lee, Distributed feedback control of the Burgers equation by a reduced-order approach using weighted centroidal Voronoi tessellation, J. KSIAM 13(2009) 293-305.
- H.-C. Lee, G.-R. Piao, Boundary feedback control of the Burgers equaitons by a reduced-order approach using centroidal Voronoi tessellations, J. Sci. Comput. 43(2010) 369-387. https://doi.org/10.1007/s10915-009-9310-4
- J.A. Burns and S. Kang, A control problem for Burgers' equation with bounded input/oqtput, ICASE Report 90-45, 1990, NASA Langley research Center, Hampton, VA
- J.A. Burns and S. Kang, A control problem for Burgers' equation with bounded input/oqtput, Nonlinear Dynamics 2(1991) 235-262. https://doi.org/10.1007/BF00045296
- J.L. Bona, W.G. Pritchard, L.R. Scott, An evaluation of a model equation for water waves, Phil.Trans.R.Soc.London A 302(1981) 457-510. https://doi.org/10.1098/rsta.1981.0178
- H. Grad, P.N. Hu, Unified shock profile in a plasma, Phys, Fluids 10(1967) 2596-2602. https://doi.org/10.1063/1.1762081
- R.S. Johnson, A nonlinear equation incorporating damping and dispersion, J.Fluid Mech. 42(1970) 49-60. https://doi.org/10.1017/S0022112070001064