DOI QR코드

DOI QR Code

선회류 예혼합버너를 적용한 개질기용 연소시스템의 배기 및 연소특성

Exhaust and Combustion Characteristics of Premixed Swirl Burner for Steam Reforming System

  • 차천륜 (인천대학교 기계시스템공학부) ;
  • 황상순 (인천대학교 기계시스템공학부)
  • Cha, Chun Loon (Division of Mechanical System Engineering, Incheon National University) ;
  • Hwang, Sang Soon (Division of Mechanical System Engineering, Incheon National University)
  • 투고 : 2014.07.11
  • 심사 : 2014.09.12
  • 발행 : 2014.09.30

초록

The reformer system is a method for hydrogen production from hydrocarbon fuels such as natural gas under high temperature environment($about{\sim}1,000^{\circ}C$). The premixed swirl burner with mixing swirler and combustion swirler designed to deliver fuel cell electric output from 0.5 kW to 1.5 kW. Premixed swirl burner experiments using natural gas and mixture of natural gas and anode off gas were carried out to analyse flame patterns and stability by equivalence ratio respectively. The results show that the stable swirl flame can be established for all cases of fuels type using the premixed swirl burner. The swirl flame had a wide stability region and it showed very low CO(50 ppm) and $NO_x$(20 ppm) emission at different fuel type and various equivalence ratio conditions. The operating range of premixed swirl burner for stable swirl flame is found to exist between equivalence ratio of 0.70 to 0.90 for turn down ratio of 3:1.

키워드

참고문헌

  1. P. H. Lee, S. A. Cho, S. S. Han and S. S. Hwang, "Performance Characteristics of Proton Exchange Membrane Fuel Cell(PEMFC) with Interdigitated Flow Channel," Int'l. J. Automotive Technology, 2007, Vol. 8, pp.761-769.
  2. S. A. Cho, P. H. Lee, S. S. Han and S. S. Hwang, "Heat transport characteristics of flow fields in proton exchange membrane fuel cells," J. of Power Sources, 2008, Vol. 178, pp.692-698. https://doi.org/10.1016/j.jpowsour.2007.09.057
  3. P. H. Lee and S. S. Hwang, "Performance Characteristics of a PEM Fuel Cell with Parallel Flow Channels at Different Cathode Relative Humidity Levels," 2009, Sensors, Vol. 9, pp.9104-9121. https://doi.org/10.3390/s91109104
  4. E. Calo, A. Giannini, G. Monteleone, "Small stationary reformers for $H_2$ production from hydrocarbons," Int'l. J. Hydrogen Energy, 2010, Vol.35, pp.9828-9835. https://doi.org/10.1016/j.ijhydene.2010.03.067
  5. H. Y. Tang, P. Erickson, H. C. Yoon, C. H. Liao, "Comparison of steam and autothermal reforming of methanol using a packed-bed low-cost copper catalyst," Int'l. J. Hydrogen Energy, 2009, Vol.34, pp.7656-7665. https://doi.org/10.1016/j.ijhydene.2009.07.032
  6. M. Toledo, V. Bubnovich, A. Saveliev and L. Kennedy, "Hydrogen production in ultrarich combustion of hydrocarbon fuels in porous media," Int'l. J. Hydrogen Energy, 2009, Vol.34, pp.1818-1827. https://doi.org/10.1016/j.ijhydene.2008.12.001
  7. S. S. Hwang, P. H. Lee, S. H. Jo, C. L. Cha, S. W. Hong, S. S. Han and J. Y. Koo, "Transient behavior of proton exchange membrane fuel cell under non-isothermal condition", 2012, Vol. 42. pp. 54-59. https://doi.org/10.1016/j.renene.2011.09.016
  8. O'Hayre, R, Cha, S. W, Collolla, W, and Prinz, F. B. "Fuel cell fundamentals", John Wiley & Sons, 2006.
  9. P. H. Lee and S. S. Hwang, "Combustion Characteristic of Anode Off Gas for Fuel Cell Reformer", J. Korean Soc. Combust., 2012, Vol.17, No. 4, pp. 5-10.
  10. Y. Huang, V. Yang, "Dynamics and stability of lean-premixed swirl-stabilized combustion", Progress in Energy and Combustion Science, 2009, Vol 356, Issue 4, PP. 293-364.
  11. L. Arthur H, "Gas Turbine Combustion", McGraw Hill, 1983.