DOI QR코드

DOI QR Code

SnO2 Hollow Hemisphere Array for Methane Gas Sensing

  • Hieu, Nguyen Minh (Department of Materials Science and Engineering, Chungnam National University) ;
  • Vuong, Nguyen Minh (Department of Materials Science and Engineering, Chungnam National University) ;
  • Kim, Dojin (Department of Materials Science and Engineering, Chungnam National University) ;
  • Choi, Byung Il (Environmental & Energy Systems Div., Korea Inst. Machinery & Materials) ;
  • Kim, Myungbae (Environmental & Energy Systems Div., Korea Inst. Machinery & Materials)
  • Received : 2014.06.17
  • Accepted : 2014.07.29
  • Published : 2014.09.27

Abstract

We developed a high-performance methane gas sensor based on a $SnO_2$ hollow hemisphere array structure of nano-thickness. The sensor structures were fabricated by sputter deposition of Sn metal over an array of polystyrene spheres distributed on a planar substrate, followed by an oxidation process to oxidize the Sn to $SnO_2$ while removing the polystyrene template cores. The surface morphology and structural properties were examined by scanning electron microscopy. An optimization of the structure for methane sensing was also carried out. The effects of oxidation temperature, film thickness, gold doping, and morphology were examined. An impressive response of ~220% was observed for a 200 ppm concentration of $CH_4$ gas at an operating temperature of $400^{\circ}C$ for a sample fabricated by 30 sec sputtering of Sn, and oxidation at $800^{\circ}C$ for 2 hr in air. This high response was enabled by the open structure of the hemisphere array thin films.

Keywords

References

  1. D. E. Williams, Sens. Actuators, B, 57, 1 (1999). https://doi.org/10.1016/S0925-4005(99)00133-1
  2. G. X. Wang, J. S. Park, M. S. Park and X. L. Gou, Sens. Actuators, B, 131, 313(2008). https://doi.org/10.1016/j.snb.2007.11.032
  3. D. Wang, X. F. Chu and M. L. Gong, Sens. Actuators, B, 117, 183 (2006). https://doi.org/10.1016/j.snb.2005.11.022
  4. C. Zheng, Y. Chu, Y. Dong, Y. Zhan and G. Wang, Mater. Lett., 59, 2018(2005). https://doi.org/10.1016/j.matlet.2005.02.042
  5. T. Hyodo, S. Abe, Y. Shimizu and M. Egashira, Sens. Actuators, B, 93, 590 (2003). https://doi.org/10.1016/S0925-4005(03)00208-9
  6. G. Xi, Y. He, Q. Zhang, H. Xiao, X. Wang and C. Wang, J. Phys. Chem. C, 112, 11645 (2008). https://doi.org/10.1021/jp802180z
  7. R. G. Deshmukh, S. S. Badadhe, M. V. Vaishampayan and I. S. Mulla, Mater. Lett., 62, 4328(2008). https://doi.org/10.1016/j.matlet.2008.07.021
  8. J. H. Lee, Sens. Actuators, B, 140, 319 (2009). https://doi.org/10.1016/j.snb.2009.04.026
  9. X. Sun, J. Liu and Y. Li, Chem. Eur. J., 12, 2039 (2006). https://doi.org/10.1002/chem.200500660
  10. T. Hyodo, K. Sasahara, Y. Shimizu and M. Egashira, Sens. Actuators, B, 106, 580(2005). https://doi.org/10.1016/j.snb.2004.07.024
  11. J. Zhang, S. Wang, Y. Wang, Y. Wang, B. Zhu, H. Xia,X. Guo, S. Zhang, W. Huang and S. Wu, Sens. Actuators, B, 135, 610 (2009). https://doi.org/10.1016/j.snb.2008.09.026
  12. Y. Xiao Ming, L. Cheng Chao, Z. Ming, H. Quan Yi, L. Shuang, L. Qiu Hong, C. Li Bao and W. Tai Hong, Nanotechnol., 20, 455503 (2009). https://doi.org/10.1088/0957-4484/20/45/455503
  13. L. He, Y. Jia, F. Meng, M. Li and J. Liu, J. Mater. Sci., 44, 4326 (2009). https://doi.org/10.1007/s10853-009-3645-y
  14. H. N. Hieu, N. M. Vuong, H. Jung, D. M. Jang, D. Kim, H. Kim and S. -K. Hong, J. Mater. Chem., 22, 1127 (2012). https://doi.org/10.1039/c1jm13696h
  15. A. Rothschild and Y. Komem, J. Appl. Phys., 95, 6374 (2004). https://doi.org/10.1063/1.1728314
  16. N. M. Vuong, H. Jung, D. Kim, H. Kim and S. -K. Hong, J. Mater. Chem., 22, 6716 (2012). https://doi.org/10.1039/c2jm15971f
  17. N. D. Hoa, N. V. Quy, D. Kim, Sens. Actuators, B, 142, 253 (2009). https://doi.org/10.1016/j.snb.2009.07.053