DOI QR코드

DOI QR Code

Fabrication of Electrochromic Devices Using Double Layer Conducting Polymers for Infrared Transmittance Control

  • Kim, Jin Kyu (Department of Chemical and Biomolecular Engineering, Yonsei University) ;
  • Koh, Jong Kwan (Department of Chemical and Biomolecular Engineering, Yonsei University) ;
  • Kim, Bumsoo (Department of Materials Science and Engineering, Korea Advanced Institute of Science and Technology (KAIST)) ;
  • Jeon, Seokwoo (Department of Materials Science and Engineering, Korea Advanced Institute of Science and Technology (KAIST)) ;
  • Ahn, Joonmo (Agency for Defense Development (ADD)) ;
  • Kim, Jong Hak (Department of Chemical and Biomolecular Engineering, Yonsei University)
  • Received : 2014.06.06
  • Accepted : 2014.06.19
  • Published : 2014.06.01

Abstract

We report the performance improvement of electrochromic devices for modulating the transmittance contrast of long wavelength infrared light between 1.5 and 5.0 ${\mu}m$ based on a double layer of conducting polymers. The device, fabricated with poly(3-hexylthiophene) (P3HT) and poly(3,4-ethylenedioxythiophene) (PEDOT) as the first and second layers, respectively, showed an transmittance contrast of 60% with a response rate under 5 s, which is greater than the transmittance contrast of cells based on only P3HT or PEDOT (approximately 40%).

Keywords

References

  1. T. Niwa, O. Takai, Thin Solid Films, 2010, 518, 5340. https://doi.org/10.1016/j.tsf.2010.04.030
  2. C.J. Brabec, N.S. Sariciftci, J.C. Hummelen, Adv. Funct. Mater. 2001, 11, 15. https://doi.org/10.1002/1616-3028(200102)11:1<15::AID-ADFM15>3.0.CO;2-A
  3. D. Li, J.X. Huang, R.B. Kaner, Acc. Chem. Res. 2009, 42, 135. https://doi.org/10.1021/ar800080n
  4. G. Kimura, K. Yamada, Synth. Metals, 2009, 159, 914. https://doi.org/10.1016/j.synthmet.2009.01.055
  5. K. Yamada, K. Seya, G. Kimura, Synth. Metals, 2009, 159, 188. https://doi.org/10.1016/j.synthmet.2008.08.009
  6. S. Wu, C. Jia, X. Fu, X. Weng, J. Zhang, L. Deng, Electrochim. Acta, 2013, 88, 322. https://doi.org/10.1016/j.electacta.2012.10.067
  7. R.D. Rauh, Electrochim. Acta 1999, 44, 3165. https://doi.org/10.1016/S0013-4686(99)00034-1
  8. P. Chandrasekhar, B.J. Zay, T. McQueeney, G.C. Birur, V. Sitaram, R. Menon, M. Coviello, R.L. Elsenbaumer, Synth. Metals, 2005, 155, 623. https://doi.org/10.1016/j.synthmet.2005.08.015
  9. E.B. Franke, C.L. Trimble, J.S. Hale, M. Schubert, J.A. Woollam, J. Appl. Phys. 2000, 88, 5777. https://doi.org/10.1063/1.1319325
  10. B. Kim, J.K. Koh, J.H. Kim, J. Ahn, S. Jeon, Electrochim. Acta. submitted.
  11. T.F. Otero, I. Boyano, M.T. Cortes, G. Vazquez, Nucleation, Electrochim. Acta, 2004, 49, 3719. https://doi.org/10.1016/j.electacta.2004.01.085
  12. U. Lange, N.V. Roznyatovskaya, V.M. Mirsky, Analy.Chim. Acta, 2008, 614, 1. https://doi.org/10.1016/j.aca.2008.02.068
  13. T.Y. Wu, Y. Chen, J. Polym. Sci. A: Polym. Chem. 2003, 41, 1444. https://doi.org/10.1002/pola.10688
  14. K.-H. Chang, H. P. Wang, T.-Y. Wu, I.-W. Sun, Electrochim. Acta, 2014, 119, 225. https://doi.org/10.1016/j.electacta.2013.11.174
  15. P. Camurlu, C. Gultekin, Z. Bicil, Electrochim. Acta, 2012, 61, 50. https://doi.org/10.1016/j.electacta.2011.11.079
  16. V. Jain, H. M. Yochum, R. Montazami, J. R. Heflin, Appl. Phys. Lett. 2008, 92, 033304. https://doi.org/10.1063/1.2834818
  17. M. Kateb, V. Ahmadi, M. Mohseni, Sol. Energy Mater. Sol. Cel. 2013, 112, 57. https://doi.org/10.1016/j.solmat.2013.01.021