DOI QR코드

DOI QR Code

Characterization and Formation of Chemical Bonds of Silica-Coupling Agent-Rubber

실리카-커플링제-고무의 화학 결합 형성과 특성 분석

  • Received : 2014.08.19
  • Accepted : 2014.08.26
  • Published : 2014.09.30

Abstract

Reaction between silica and silane coupling agent without solvent was investigated using transmission mode Fourier transform infrared spectroscopy (FTIR) and thermogravimetric analysis (TGA). Bis[3-(triethoxysilylpropyl) tetrasulfide] (TESPT) was used as a silane coupling agent. After removing the unreacted TESPT, formation of chemical bonds was analyzed using FTIR and content of reacted TESPT was determined using TGA. Content of the coupling agent bonded to silica increased with increase in the coupling agent content, but the oligomers were formed by condensation reaction between coupling agents when the coupling agent was used to excess. In order to identify bonds formed among silica, coupling agent, and rubber, a silica-coupling agent-BR model composite was prepared by reaction of the modified silica with liquid BR of low molecular weight and chemical bond formation of silica-coupling agent-BR was investigated. Unreacted rubber was removed with solvent and analysis was performed using FTIR and TGA. BR was reacted with the coupling agent of the modified silica to form chemical bonds. Polarity of silica surface was strikingly reduced and particle size of silica was increased by chemical bond formation of silica-coupling agent-BR.

용매를 사용하지 않고 실리카와 실란커플링제의 반응을 투과 방식 휴리에 변환 적외선 분광법(FTIR)과 열중량 분석법(TGA)을 이용하여 조사하였다. 실란커플링제로 bis[3-(triethoxysilylpropyl) tetrasulfide] (TESPT)를 사용하였다. 미반응 TESPT를 제거한 후, FTIR로 화학 결합 형성을 분석하였고 TGA로 반응한 TESPT 함량을 결정하였다. 커플링제의 함량이 증가할수록 실리카에 결합한 커플링제의 양이 증가하였으나, 커플링제를 과량으로 첨가하면 커플링제 간의 축합반응에 의해 올리고머를 형성하였다. 실리카와 커플링제 그리고 고무의 결합을 확인하기 위하여 개질 실리카와 저분자량 액상 BR을 반응시켜 실리카-커플링제-BR 모델 복합체를 제조하여 화학 결합 형성을 조사하였다. 미반응 고무는 용매를 사용하여 제거하였고 FTIR과 TGA로 분석하였다. BR은 개질 실리카의 커플링제와 반응하여 화학 결합을 형성하였다. 실리카-커플링제-BR의 화학 결합 형성으로 인해 실리카 표면의 극성은 크게 낮아졌고 실리카 입자 크기는 커지는 효과를 보였다.

Keywords

References

  1. K. W. Lim, S. C. Ji, and K. Y. Jung, "Advanced synthetic technology for high performance energy tire tread rubber", Elast. Compos., 44, 232 (2009).
  2. K. W. Stockelhuber, A. S. Svistkov, A. G. Pelevin, and G. Heinrich, "Impact of filler surface modification on large scale mechanics of styrene butadiene/silica rubber composites", Macromolecules, 44, 4366 (2011). https://doi.org/10.1021/ma1026077
  3. N. Suzukia, M. Itoa, and F. Yatsuyanagi, "Effects of rubber/filler interactions on deformation behavior of silica filled SBR systems", Polymer, 46, 193 (2005). https://doi.org/10.1016/j.polymer.2004.10.066
  4. J. G. Meier, J. Fritzsche, L. Guy, Y. Bomal, and M. Kluppel, "Relaxation dynamics of hydration water at activated silica interfaces in high-per'' formance elastomer composites", Macromolecules, 42, 2127 (2009). https://doi.org/10.1021/ma802002s
  5. Y. Li, M. J. Wang, T. Zhang, F. Zhang, and X. Fu, "Study of dispersion morphology of silica in rubber", Rubber Chem. Technol., 67, 693 (1994). https://doi.org/10.5254/1.3538704
  6. S. Wolff and M. J. Wang, "Filler-elastomer interaction. Part IV. The effect of the surface energies of fillers on elastomer reinforcement", Rubber Chem. Technol., 65, 329 (1992). https://doi.org/10.5254/1.3538615
  7. S. Wolff, U. Gorl, M. J. Wang, and W. Wolff, "Silane modified silicas", Eur. Rubber J., 16, 16 (1994).
  8. W. Hertl, "Mechanism of gaseous siloxane reaction with silica", J. Phys. Chem., 72, 1248 (1968). https://doi.org/10.1021/j100850a030
  9. L. L. Tedder, L. Guangquan, and J. E. Crowell, "Mechanistic studies of dielectric thin film growth by low pressure chemical vapor deposition: The reaction of tetraethoxysilane with $SiO_2$ surfaces", J. Appl. Phys., 69, 7037 (1991). https://doi.org/10.1063/1.348932
  10. D. W. Sindorf and G. E. Maciel, "Solid-state NMR studies of the reactions of silica surfaces with polyfunctional chloromethylsilanes and ethoxy methylsilanes", J. Am. Chem. Soc, 105, 3767 (1983). https://doi.org/10.1021/ja00350a003
  11. Y. Matsumura, K. Hashimoto, and S. Yoshida, "Quantum chemical interpretation of the mechanism of ethanol dehydrogenation driven by active oxygen bridges in silicate-1 and silica", J. Mol. Catal., 68, 73 (1991). https://doi.org/10.1016/0304-5102(91)80062-8
  12. U. Goerl, A. Hunsche, A. Mueller, and H. G. Koban, "Investigations into the silica/silane reaction system", Rubber Chem. Technol., 70, 608 (1997). https://doi.org/10.5254/1.3538447
  13. F. Vilmin, "Reactivity of bis[3-(triethoxysilyl)propyl] tetrasulfide (TESPT) silane coupling agent over hydrated silica: Operando IR spectroscopy and chemometrics study", J. Phys. Chem. C, 118, 4056 (2014).
  14. J. D. Le Grange, J. L. Markham, and C. R. Kurkjian, "Effects of surface hydration on the deposition of silane monolayers on silica", Langmuir, 9, 1749 (1993). https://doi.org/10.1021/la00031a023
  15. P. Silberzan, L. Leger, D. Ausserre, and J. J.Benattar, "Silanation of silica surfaces. A new method of constructing pure or mixed monolayers", Langmuir, 7, 1647 (1991). https://doi.org/10.1021/la00056a017
  16. W. Yoshida, R. P. Castro, J. D. Jou, and Y. Cohen, "Multilayer alkoxysilane silylation of oxide surfaces", Langmuir, 17, 5882 (2001). https://doi.org/10.1021/la001780s
  17. K. C. Vrancken, P. Van Der Voort, I. Gillis-D'Hamers, E. F. Vansant, and P. Grobet, "Influence of water in the reaction of [gamma]-aminopropyltriethoxysilane with silica gel. A Fourier-transform infrared and cross-polarisation magic-angle-spinning nuclear magnetic resonance study". J. Chem. Soc., Faraday Trans., 88, 3197 (1992). https://doi.org/10.1039/ft9928803197
  18. H. S. Ryu, Y. S. Lee, J. C. Lee, and K. R. Ha, "Modification of silica nanoparticles with bis[3-(triethocysilylpropyl)]tetrasulfide and their application for SBR nanocomposite", Polymer(Korea), 37, 308 (2013). https://doi.org/10.7317/pk.2013.37.3.308
  19. A. Carreno, E. Schott, X. Zzrate, R. Arratia-Perez, J. C. Vega De, M. Mardones, J. M. Manriquez, and I. Chavez, "Adsorption essays of palladium in modified silica gel with thiouronium groups: Experimental and theoretical studies", J. Chil. Chem. Soc., 56, 692 (2011). https://doi.org/10.4067/S0717-97072011000200015
  20. Y. Li, B. Han, S. Wen, Y. Lu, H. Yang, L. Zhang, and L. Liu, "Effect of the temperature on surface modification of silica and properties of modified silica filled rubber composites", Composites: Part A, 62, 52 (2014). https://doi.org/10.1016/j.compositesa.2014.03.007