DOI QR코드

DOI QR Code

수용액 내에서 수용성개시제를 이용한 단분산성 폴리아크릴산의 용액중합

Preparation of Monodisperse Poly(Acrylic acid) with a Water-Soluble Initiator by Solution Polymerization in Aqueous Phase

  • 박문수 (수원대학교 공과대학 신소재공학과) ;
  • 김예지 (수원대학교 공과대학 신소재공학과)
  • Park, Moonsoo (Department of Polymer Engineering, University of Suwon) ;
  • Kim, Yeji (Department of Polymer Engineering, University of Suwon)
  • 투고 : 2014.07.31
  • 심사 : 2014.08.12
  • 발행 : 2014.09.30

초록

수용성 단량체인 아크릴산 (AA)을 단량체로 potassium persulfate (KPS)를 개시제로 이용하여 $60^{\circ}C$에서 $90^{\circ}C$ 사이의 선택된 온도에서 물을 반응매체로 하여 용액중합을 진행하였다. 아크릴산의 농도가 감소하거나 개시제의 농도가 증가하면 분자량은 감소하였다. 중합반응온도를 상승하면 폴리아크릴산 (PAA)의 분자량은 감소하였다. 대부분의 중합반응에서 분산성지수는 1.5 에 근접하는 것으로 관찰되었다. 교반속도가 증가하면서 400 rpm에서 분자량은 최고값을 나타낸 후, 교반속도가 800 rpm에 이르면서 수평균 및 중량평균분자량은 감소하였다. 유리전이온도는 분자량에 따라 크게 변하지 않았으며 $113^{\circ}C$에서 $116^{\circ}C$ 사이의 값을 나타내었다.

Solution polymerization was conducted with water-soluble acrylic acid (AA) as a monomer and potassium persulfate (KPS) as an initiator at a selected temperature between $60^{\circ}C$ and $90^{\circ}C$ with water as a reaction medium. When the ratio between AA and water was reduced or initiator concentration increased, molecular weights decreased. An increase in the reaction temperature produced lower molecular weights. The polydispersity index was close to 1.5 in most of the reactions. An increase in the stirring speed up to 400 rpm led to a progressive increase in molecular weights. When the stirring speed reached 800 rpm, however, we found that both the number and weight average molecular weights decreased. The glass transition temperature was nearly independent of moelcular weights and determined to be between $113^{\circ}C$ and $116^{\circ}C$.

키워드

참고문헌

  1. S. Beuermann, M. Buback, P. Hesse and I. Lacik, "Free-Radical Propagation Rate Coefficient of Nonionized Methacrylic Acid in Aqueous Solution from Low Monomer Concentrations to Bulk Polymerization", Macromolecules, 39, 184 (2006). https://doi.org/10.1021/ma051954i
  2. S. Beuermann, M. Buback, P. Hesse, R. A. Hutchinson, S. Kukuckova and I. Lacik, "Termination Kinetics of the Free-Radical Polymerization of Nonionized Methacrylic Acid in Aqueous Solution", Macromolecules, 41, 3513 (2008). https://doi.org/10.1021/ma7028902
  3. N. F. G. Wittenberg, M. Buback, M. Stach and I. Lacik, "Chain Transfer to 2-Mercaptoethanol in Methacrylic Acid Polymerization in Aqueous Soultion", Macromol. Chem. Phys., 213, 2653 (2012). https://doi.org/10.1002/macp.201200484
  4. S. Muthukrishnan, E. H. Pan, M. H. Stenzel, C. Barner-Kowollik, T. P. Davis, D. Lewis and L. Barner, "Ambient Temperature RAFT Polymerization of Acrylic Acid Initiated with Ultraviolet Radiation in Aqueous Solution", Macromolecules, 40, 2978 (2007). https://doi.org/10.1021/ma0703094
  5. J. D. Mota-Morales, M. C. Gutierrez, M. Luisa Ferrer, R. Jimenez, P. Santiago, I. C. Sanchez, M. Terrones, F. D디 Monte and G. Luna-Barcenas, "Synthesis of macroporous poly(acrylic acid)-carbon nanotube composites by frontal polymerization in deep-eutectic solvents", J. Mater. Chem. A, 1, 3970 (2013). https://doi.org/10.1039/c3ta01020a
  6. B. Grassel, G. Clisson, A. Khoukh and L. Billon, "Nitroxidemediated radical polymerization of acrylamide in water solution", Euro. Polymer J., 44, 50 (2008). https://doi.org/10.1016/j.eurpolymj.2007.10.019
  7. I. Rintoul and C. Wandrey, "Magnetic field effects on the free radical solution polymerization of acrylamide", Polymer, 48, 1903 (2007). https://doi.org/10.1016/j.polymer.2007.02.002
  8. J. H. de Groot, A. Zurutuza, C. R. Moran, N. B. Graham, K. A. Hodd and S. Norrby, "Water-soluble microgels made by radical polymerization in solution", Colloid Polym. Sci., 279, 1219 (2001). https://doi.org/10.1007/s003960100582
  9. E. J. Jimenez-Regalado, G. Cadenas-Pliego, M. Perez-Alvarez and Y. Hernandez-Valdez, "Study of three different families of water-soluble copolymers: synthesis, characterization and viscoelastic behavior of semidilute solutions of polymers prepared by solution polymerization", Polymer, 45, 1993 (2004). https://doi.org/10.1016/j.polymer.2003.12.065
  10. P. Ulanski, E. Bothe, K. Hildenbrand and C. v. Sonntag, "Free-Redical-Induced Chain Breakage and Depolymerization of Poly(methacrylic acid): Equilibrium Polymerization in Aqueous Solution at Room Temperature", Chem. Eur. J., 6-21, 3922 (2000).
  11. Encyclopedia of Polym. Sci. & Eng, 2nd ed., H. Mark, N. Bikales, C. Overberger and G. Menges, Vol. 8, page 341 (1989).
  12. R. J. Minari, G. Caceros, P. Mandelli, M. M. Yossen, M. Gonzalez-Sierra, J. R. Vega and L. M. Gugliotta, "Semibatch Aqueous-Solution Polymerization of Acrylic Acid: Simultenaeous COntrol of Molar Masses and Reaction Temperature", Macromol. Reac. Eng., 5, 223 (2011). https://doi.org/10.1002/mren.201000059
  13. I. Lacik, L. Ucnova, S. Kukuckova, M. Buback, P. Hesse and S. Beuermann, M. Buback, "Propagation Rate Coefficient of Free-Radical Polymerization of Partially and Fully Ionized Methacrylic Acid in Aqueous Solution", Macromolecules, 42, 7753 (2009). https://doi.org/10.1021/ma9013516
  14. M. Buback, P. Hesse and I. Lacik, "Propagation Rate Coefficient and Fraction of Mid-Chain Radicals for Acrylic Acid in Aqueous Solution", Macromol. Rapid Commun., 28, 2049 (2007). https://doi.org/10.1002/marc.200700396
  15. J. Moon, K. Chung and M. Park, "Preparation of Monodisperse Poly(Methacrylic acid) with a Water-Soluble Initiator by Solution Polymerization in the Aqueous Phase", Elast. Compos., 48-4, 294 (2013). https://doi.org/10.7473/EC.2013.48.4.294
  16. I. Lacik, S. Beuermann and M. Buback, "Aqueous Phase Size-Exclusion-Chromatography Used for PLP-SEC Studies into Free-Radical Propagation Rate of Acrylic Acid in Aqueous Solution", Macromolecules, 34, 6224 (2001). https://doi.org/10.1021/ma002222n
  17. I. Lacik, S. Beuermann and M. Buback, "PLP-SEC Study into Free-Radical Propagation Rate of Nonionized Acrylic Acid in Aqueous Solution", Macromolecules, 36, 9355 (2003). https://doi.org/10.1021/ma030365e
  18. Introduction to Polymers, 3rd edition, R. Y. Young and P. A. Povell, page 85 (2011).