References
- Alouia, R., Aissa, M. S. B. and Nguyen, D. K. (2013). Conditional dependence structure between oil prices and exchange rates: A copula-GARCH approach, Journal of International Money and Finance, 32, 719-738. https://doi.org/10.1016/j.jimonfin.2012.06.006
- Bollerslev, T. (1986). Generalized autoregressive conditional heteroskedasticity, Journal of Econometrics, 31, 300-328.
- Dobric, J. and Schmid, F. (2005). Nonparametric estimation of the lower tail dependence in bivariate copulas, Journal of Applied Statistics, 32, 387-407. https://doi.org/10.1080/02664760500079217
- Engle, R. F. (2002). Dynamic conditional correlation: A simple class of multivariate GARCH models, Journal of Business and Economic Statistics, 20, 339-350. https://doi.org/10.1198/073500102288618487
- Glosten, L. R., Jagannathan, R. and Runkle, D. (1993). On the relation between the expected value and the volatility of the nominal excess return on stocks, Journal of Finance, 48, 1779-1801. https://doi.org/10.1111/j.1540-6261.1993.tb05128.x
- Hillebrand, E. (2005). Neglecting parameter changes in GARCH models, Journal of Econometrics, 129, 121-138. https://doi.org/10.1016/j.jeconom.2004.09.005
- Huang, J. J., Lee, K. J., Liang, H. and Lina, W. F. (2009). Estimating value at risk of portfolio by conditional copula-GARCH method, Insurance: Mathematics and Economics, 45, 315-324 https://doi.org/10.1016/j.insmatheco.2009.09.009
- Joe, H. (1997). Multivariate models and dependence concepts, Monographs in Statistics and Probability 73, Chapman and Hall, London.
- Jondeau, E. and Rockinge, M. (2006). The Copula-GARCH model of conditional dependencies: An international stock market application, Journal of International Money and Finance, 25, 827-853. https://doi.org/10.1016/j.jimonfin.2006.04.007
- Liu, Y. and Luger, R. (2009). Efficient estimation of copula-GARCH models, Computational Statistics & Data Analysis, 53, 2284-2297. https://doi.org/10.1016/j.csda.2008.01.018
- Marshal, R. and Zeevi, A. (2002). Beyond correlation: Extreme comovements between financial assets, Working Paper, Columbia Business.
- Mikosch, T. and Starica, C. (2004). Nonstationarities in financial times series, the long range dependence and the IGARCH effects, The Review of Economics and Statistics, 86, 378-390. https://doi.org/10.1162/003465304323023886
- Nelsen, R. B. (2006). An Introduction to Copulas, Springer, Second edition, New York.
- Pesaran, B. and Pesaran, M. H. (2007). Modelling volatilities and conditional correlations in futures markets with a multivariate t distribution, Cambridge Working Papers in Economics 0734.
- RiskMetrics. (1996). RiskMetrics TM Technical Document, Fourth edition, J.P. Morgan/Reuters.
Cited by
- The GARCH-GPD in market risks modeling: An empirical exposition on KOSPI vol.27, pp.6, 2016, https://doi.org/10.7465/jkdi.2016.27.6.1661
- Construction of bivariate asymmetric copulas vol.25, pp.2, 2018, https://doi.org/10.29220/CSAM.2018.25.2.217