Effects of Trachelospermum caulis Extract on Sodium Nitroprusside (SNP)-induced Inflammatory Responses in Rabbit HIG-82 Synovial Membrane Cells

낙석등 추출물이 토끼 HIG-82 활액막 세포주에서 Sodium Nitroprusside (SNP)로 유도된 염증반응에 미치는 영향

  • Park, Jung-Sik (Department of Korean Medicine Rehabilitation, College of Korean Medicine, Gachon University) ;
  • Lim, Hyung-Ho (Department of Korean Medicine Rehabilitation, College of Korean Medicine, Gachon University)
  • 박정식 (가천대학교 한의과대학 한방재활의학과교실) ;
  • 임형호 (가천대학교 한의과대학 한방재활의학과교실)
  • Received : 2014.03.18
  • Accepted : 2014.04.07
  • Published : 2014.04.30

Abstract

Objectives Trachelospermi caulis, known as Nak-Suk-Deung in Korea, is the dried leafy stem of Trachelospermum asiaticum var. intermedium Nakai, and climbing stems and branches of Trachelospermum sdisyivum var, intermedium nakai or Apocyanaceae. Trachelospermi caulis has antipyretic and analgesic activity. It has traditionally been used as a folk remedy in Korea for the treatment of various infla mMatory diseases, including rheumatoid arthritis. The purpose of this study was to evaluate the Effects of Trachelospermum caulis extract on SNP-induced infla mMatory responses in rabbit HIG-82 synovial membrane cells. Methods Anti-infla mMatory effects of the extract of Trachelospermum caulis were investigated using rabbit HIG-82 synovial membrane cells. For this study, 3-(4,5-dimethylthiazol- 2-yl)-2,5-diphenyltetrazolium bromide (MTT) assay, western blot analysis, PGE2 i mMunoassay, and NO detection were conducted. Results The aqueous extract of Trachelospermum caulis exerted cytotoxicity and suppressed PGE2 synthesis and NO production in rabbit HIG-82 synovial membrane cells. The aqueous extract of Trachelospermum caulis also inhibited the SNP-induced expressions of COX-2, iNOS, and TNF-$\alpha$ in rabbit HIG-82 synovial membrane cells. Conclusions These results showed that the extract of Trachelospermum caulis exerts the anti-infla mMatory effect by suppressing COX-2, iNOS, and TNF-$\alpha$ expressions in the synovial membrane cells.

Keywords

References

  1. William F., Ganongn, MD. 전국의과대학교수 역. 생리학. 서울:한우리. 1999:681.
  2. Kaplanski G, Marin V, Montero-Julian F, Mantovani A, Farnarier C. IL-6: a regulator of the transition from neutrophil to monocyte recruitment during infla mMation. Trends I mMunol. 2003;24(1):25-9. https://doi.org/10.1016/S1471-4906(02)00013-3
  3. Kang-Rotondo CH, Major S, Chiang TM, Myers LK, Kang ES. Upregulation of nitric oxide synthase in cultured human keratinocytes after ultraviolet B and bradykinin. Photodermatol Photoi mMunol Photomed. 1996;12(2):57-65. https://doi.org/10.1111/j.1600-0781.1996.tb00176.x
  4. Seo SJ, Choi HG, Chung HJ, Hong CK. Time course of expression of mRNA of inducible nitric oxide synthase and generation of nitric oxide by ultraviolet B in keratinocyte cell lines. Br J Dermatol. 2002;147(4):655-62. https://doi.org/10.1046/j.1365-2133.2002.04849.x
  5. Shew RL, Papka RE, McNeill DL, Yee JA. NADPH-diaphorase- positive nerves and the role of nitric oxide in CGRP relaxation of uterine contraction. Peptides. 1993; 14(3):637-41. https://doi.org/10.1016/0196-9781(93)90157-C
  6. Kawamata H, Ochiai H, Mantani N, Terasawa K. Enhanced expression of inducible nitric oxide synthase by Juzen-taiho-to in LPS activated RAW 264.7 cells, a murine macrophage cell line. Am J Chin Med. 2000; 28(2):217-26. https://doi.org/10.1142/S0192415X0000026X
  7. Kasper, Braunwald, Fauci, Hauser, Longo, Jameson. 대한내과학회 역. HARRISON'S 내과학. 서울:도서출판 MIP. 2006:2148-51.
  8. Matthew H Ornstein and Kirk Sperber. The antiinfla mMatory and antiviral effects of hydroxychloroquine in two patients with acquired i mMunodeficiency syndrome and active infla mMatory arthritis. Arthritis Rheum. 1996; 39(1):157-61. https://doi.org/10.1002/art.1780390122
  9. 전국한의과대학 본초학편집위원회. 본초학. 서울:영림사. 2005:319-20.
  10. 이태호, 이은용. 絡石藤약침이 Collagen 유발 관절염에 미치는 영향. 대한침구학회지. 2009;26(6):51-65.
  11. Tan XQ, Guo LJ, Qiu YH, Chen HS, Tan CH. Chemical constituents of Trachelospermum jasminoides. Nat Prod Res. 2010;24(13):1248-52. https://doi.org/10.1080/14786410903244962
  12. 신민교, 송호준, 이장천. 絡石藤과 地錦의 效能에 關한 書誌學的 比較考察. 대한본초학회지. 1988;13(1):37-43.
  13. 임형호, 김성수, 신현대. 絡石藤의 效能에 關한 實驗的 硏究. 경희의학. 1991;7(3):334-41.
  14. Lee MH, Lee JM, Jun SH, Ha CG, Lee SH, Kim NW, Lee JH, Ko NY, Mun SH, Park SH, Kim BK, Her E, Kim YM, Choi WS. In-vitro and in-vivo anti-infla mMatory action of the ethanol extract of Trachelospermi caulis. J Pharm Pharmacol. 2007;59(1):123-30. https://doi.org/10.1211/jpp.59.1.0016
  15. 정시화, 김승형, 김현규, 윤보라, 이희웅, 임주환, 노문철, 김동희. 팥 에탄올 추출물의 Papain 유도 관절염 마우스에서의 항 골관절염 효과. 동의생리병리학회지. 2012;26(5):665-71.
  16. Sarzi-Puttini P, Ci mMino MA, Scarpa R, Caporali R, Parazzini F, Zaninelli A, Atzeni F, Canesi B. Osteoarthritis; an overview of the disease and its treatment strategies, Semin Arthritis Rheum. 2005;35(1):1-10.
  17. 보건복지부 건강정책과. 2011 국민건강통계. 서울:보건복 지부. 2012:512.
  18. Cashman JN. The mechanisms of action of NSAIDs in analgesia. Drugs. 1996;52(5):13-23. https://doi.org/10.2165/00003495-199600525-00004
  19. Duerksen-Hughes PJ, Day DB, Laster SM, Zachariades NA, Aquino L, Gooding LR. Both tumor necrosis factor and nitric oxide participate in lysis of simian virus40- transformed cells by activated macrophages. J I mMunol. 1992;149(6):2114-22.
  20. Crofford LJ, Lipsky PE, Brooks P, Abramson SB, Simon LS, van de Putte LB. Basic biology and clinical application of specific cyclooxygenase-2 inhibitors. Arthritis Rheum. 2000;43(1):4-13. https://doi.org/10.1002/1529-0131(200001)43:1<4::AID-ANR2>3.0.CO;2-V
  21. Dawson TM, Zhang J, Dawson VL, Snyder SH. Nitric oxide: cellular regulation and neuronal injury. Prog Brain Res. 1994;103:365-9. https://doi.org/10.1016/S0079-6123(08)61150-4
  22. Nathan C, Xie QW. Nitric oxide synthases: roles, tolls, and controls. Cell. 1994;78(6):915-8. https://doi.org/10.1016/0092-8674(94)90266-6
  23. Park SJ, Kim JY, Jan YP, Cho YW, Ahn EM, Baek NI, Lee KT. Inhibition of LPS induced iNOS, COX-2 and cytokines expression by Genistein-4'-O-$\alpha$-L-Rhamnopyranosyl-( 1-2)-$\beta$-D-glucopyranoside through the $NF-{\kappa}B$ inactivation in RAW 264.7 cells. Kor J Pharmacogen. 2007;38(4):339-48.
  24. McCartney-Francis N, Allen JB, Mizel DE, Albina JE, Xie QW, Nathan CF, Wahl SM. Suppression of arthritis by an inhibitor of nitric oxide synthase. J Exp Med. 1993; 178(2):749-54. https://doi.org/10.1084/jem.178.2.749
  25. Badger AM, Cook MN, Swift BA, Newman-Tarr TM, Gowen M, Lark M. Inhibition of interleukin-1 induced proteoglycan degradation and nitric oxide production in bovine articular cartilage/chondrocyte cultures by the natural product, hymenialdisine. J Pharmacol Exp Ther. 1999;290(2):587-93.
  26. Westacott CI, Sharif M. Cytokines in osteoarthritis: mediators or makers of joint destruction. Semin Arthriris Rheum. 1996;25(4):254-327. https://doi.org/10.1016/S0049-0172(96)80036-9
  27. Anggard E. Nitric oxide: mediator, murderer, and medicine. Lancet. 1994;343(8907):1199-206. https://doi.org/10.1016/S0140-6736(94)92405-8
  28. SzabóC. Alterations in nitric oxide production in various forms of circulatory shock. New Horiz. 1995;3(1):2-32.
  29. MacMicking J, Xie QW, Nathan C. Nitric oxide and macrophage function. Annu Rev I mMunol. 1997;15:323-50. https://doi.org/10.1146/annurev.immunol.15.1.323
  30. Ohshima H, Bartsch H. Chronic infections and infla mMatory processes as cancer risk factors: possible role of nitric oxide in carcinogenesis. Mutat Res. 1994;305(2): 253-64. https://doi.org/10.1016/0027-5107(94)90245-3
  31. Kim KW, Ha KT, Park CS, Jin UH, Chang HW, Lee CS, Kim CH. Polygonum cuspidatum, compared with baicalin and berberine, inhibits inducible nitric oxide synthase and cyclooxygenase-2 gene expressions in RAW 264.7 macrophages. Vascul Pharmacol. 2007;47(2,3):99-107. https://doi.org/10.1016/j.vph.2007.04.007
  32. Fö.rstermann, U, Kleinert H. Nitric oxide synthase: expression and expressional control of the three isoforms. Naunyn Schmiedebergs Arch Pharmacol. 1995;352(4): 351-64.
  33. Barrera P, Boerbooms AM, Janssen EM, Sauerwein RW, Gallati H, Mulder J, de Boo T, Demacker PN, van de Putte LB, van der Meer JW. Circulating soluble tumor necrosis factor receptors, interleukin-2 receptors, tumor necrosis factor alpha, and interleukin-6 levels in rheumatoid arthritis. Longitudinal evaluation during methotrexate and azathioprine therapy. Arthritis Rheum. 1993;36(8): 1070-9. https://doi.org/10.1002/art.1780360807
  34. Saxne T, Palladino MA Jr, Heinegard D, Talal N, Wollheim FA. Detection of tumor necrosis factor a but not tumor necrosis factor $\beta$ in rheumatoid arthritis synovial fluid and serum. Arthritis Rheum. 1988;31(8): 1041-5. https://doi.org/10.1002/art.1780310816
  35. Olsen NJ, Stein CB. New drugs for rheumatoid arthritis. N Engl J Med. 2004;350(21):2167-79. https://doi.org/10.1056/NEJMra032906
  36. Moreland LW, Baumgartner SW, Schiff MH, Tindall EA, Fleischmann RM, Weaver AL, Ettlinger RE, Cohen S, Koopman WJ, Mohler K, Widmer MB, Blosch CM. Treatment of rheumatoid arthritis with a recombinant human tumor necrosis factor receptor (p75)-Fc fusion protein. N Engl J Med. 1997;337(3):141-7. https://doi.org/10.1056/NEJM199707173370301
  37. Den Broeder A, an de Putte LB. A single dose, placebo controlled study of the fully human anti-tumor necrosis factor-$\alpha$ antibody adalimumab (D2E7) in patients with rheumatoid arthritis. J Rheumatol. 2002;29(11):2288-98.
  38. Fleischmann RM, Schechtman J, Bennett R, Handel ML, Burmester GR, Tesser J, Modafferi D, Poulakos J, Sun G. Anakinra: A recombinant human interleukin-1 receptor antagonist (rmetHulL-1ra), in patients with rheumatoid arthritis: A large, international, multicenter, placebo-controlled trial. Arthritis Rheum. 2003;48(4):927-34. https://doi.org/10.1002/art.10870