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1. Introduction

In recent years a number of authors have considered error inequalities for some
known and some new quadrature rules. Sometimes they have considered gener-
alizations of these rules. For example, the well-known trapezoid and midpoint
quadrature rules are considered in ([1, 2, 9, 10]). In [2], we can find
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For n = 1, we get the midpoint rule
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In [11], a generalized trapezoid rule is derived by Ujevié as follows:
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where

z—a)” b—a)(z—a)” "t a+b

T (x) o { ( n!) - 2)((n—1))! ’ T € [ 2 ]a
n ! z—b)" b—a)(z—b)" 1!

( n!) + 4 2)(%—1))! , we ().

In [4] and [8], the following unified treatment for generalizations of the mid-
point, trapezoid, averaged midpoint-trapezoid and Simpson type inequalities is
obtained by Liu and Liu, respectively,

/bﬂxmx=

n 1]
[1—0@2k+1)](b—a)**! o) at+d
+Z (2k + 1)122k A 2

a+b

o |04(a) + 20 = 0)F(“5=) + 05 (b)|

)
_)n / Ko (2, 0) ™ (2)dx,

where 6 € [0,1] and

rz—a)™ 0(b—a)(z—a)™ ! a
K (m 9) L { ( n!) - & 2()75 1)‘) ] o TE m’%b]?
A" - r—b)"™ 6(b—a)(x—b)"" a
o - & ()75 1)|) , we (0.

In [5], Liu established the following generalized perturbed trapezoid rule.
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where K, (z) is the kernel given by

z—a)" b—a)(z—a)" "t b—a)?(z—a)" 2 a—+b
Kn(z) = { ( nl) - 2)((7;—1))! ] + ( 1)22((”_2))1 L T € [a, %],
A T o I o Y (o el o a
T R s covm | R S 157 coputs) r z € (%

In [7] and [12], the following generalization of the perturbed midpoint-trapezoid
rule is established by Liu and Ujevié et al., respectively.

Theorem 1.1. Let f : [a,b] — R be a function such that =) is absolutely
continuous on [a,b]. Then we have

b _a2
[ fys = - @OFHCREIO 00

. = 150) - /(@)
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n;l]
1 (2k = 2)(2k = 3)(b — a)***! opy a+b
+§ Z (2k + 1)122k+2 ( 9 )+ R(f),
k=2
where [%51] denotes the integer part of "5 and R(f) = f Qn () f0) (z)d,
—a)™ _ _ yn—1 _  \n-2 "
o= { - pegm ewum
n T z—b)" b—a)(x—b)" ! (b—a)?(z—b)" 2
( n! + ( 4)(77,71)! + 48(n72))! ’

Some sharp perturbed midpoint inequalities are proved by Liu in [6] based on
the following identity:

b b
[ 1@ - - O 0 - @i = [ K@@, @)
where
@=a)® _ (b—a)? a+tb
K ={ 27 2 z € [a, 457,
o { -t we(fy
and
_ [ gla—a)(*F —a)(@ - 250), € fa, 430,
KS(x) -—{ f(b )( 2_ )( _ 3b§a)’ = (a+b b].
Theorem 1.2 ([6]). Let f : [a,b] — R be a twice differentiable mapping such

a
that f" is integrable with I's = sup,¢,p) f" (%) and Yo = infoe(ap) [/ (x). Then
we have

o-ar - ) - f < B Ro-o? ®
6= ] < 1 ,

( -2 O - F @] € 5 0= ) - (@) —nb-a),

2 0

0-ar (0~ L5 0) - @] < 60— o)~ 16) + (@)

()
Theorem 1.3 ([6]). Let f : [a,b] — R be a third-order differentiable mapping
such that f" is integrable with I's = sup,¢(q ) [ (z) and v3 = infoeap) [ (2).
Then we have

a —a)? —
6-as il - O ) @) < 200t @
a0 O )| < L2 a0 @) - ),

™
a —a2
[ 1@as- -1 ) - O 0 @] < YE 0P Ta0-0) -0+ @)

(8)
The purpose of this paper is to extend (2) to a more general version, that is,

a generalized perturbed midpoint rule is established. Various error bounds for
the generalizations are also given.
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2. For differentiable mappings with bounded derivatives

Theorem 2.1. Let f :

. [a,b] = R be a mapping such that the derivative f™=!

(n > 2) is absolutely continuous on [a,b] and M, = Sup,c (g |f)(z)] < oo.

Then we have

a+b (b_a)2 / /
/ Flade = (b= ) f(“27) = C b~ £ ()]
1)(2k +3)(b—a)®* ! oy atb
* Z 3(2k + 1)122k A 2 )
V3(b—a)® n=2
SM X n 54n77 _g)n 1 oo
! { : +?gz)((n+12))!(2bn+1) ) n=3,

where [251] denotes the integer part of 5%

Proof. Tt is not difficult to find the identity

b a )2
[ t@ie— o= a3 - 50 - 1

[n 1
1)(2k +3)(b—a)®* ! oy atb
+Z 3(2k + 1)122k A 2 )

/S ) (z)d,

where S, (z) is the kernel given by

(e—a)" _ (b—a)’(z—a)" 2 -
Snlw) = { (oo (b (et v €le, ? J
Wl T 2dmpr 0 TE (42 b].

Using the above identity, we get

/f iz — (b a) (50~ O ) gr(a

1]
Z E—1)(2k+3)(b 2k+1 a+b
+ Z ( )((2k+1))(!22k 2 0 7 )

* b1 b
- / 1, () ) ()| dz < M, / 1S, () d.

Now, we put

r—a)” b—a)(z —a)" 2 a+b
Pofo) = n!) = 24)(T(L—2)!) o wele =l
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(x—=b" (b—a)?(x—b)"2 a+b
() = _ , b,
@n(®) nl 24(n — 2)! (=l
a+b

It is clear that P,(z) and Q,(z) are symmetric with respect to the line z =

2

for n even and symmetric with respect to the point (“7“’, 0) for n odd. Therefore,

a+h

b—g)nt! 1 -1
/ | ()] dz = 2/ | Py ()| d = %/ t"‘Q‘tQ _nm=b)g,
2nn) 0 6
By substitution z = a+252¢, we find that r,, () := t> — "("Tfl) is always negative
on [0,1] for n > 3. Thus
b o
/ |Sp(x)|de = 2/ | P, (x)|dx
(b—a)"*! /1 tn—z‘tz _nn=1)).,
2nn) 0 6
 (n+3)(n—2)(b—a)"t?
B 3(n + 1)12n+l
for n > 3, and
b o
[ 1sae = 2 [ 7 P@lde
 V3B(b—a)?
N 54
Hence,
V3(b— a)3 —
e n=2
|S |dl‘ = n 54 n @)t ’ (12)
/ ( +3§3((n+12))'(21:‘+1) N s
Consequently, inequalities (9) follow from (11) and (12). O

Remark. Applying (10) for n = 2, 3 respectively, we get the identity (2).

For convenience in further discussions, we collect some technical results which
are not difficult to obtain by elementary calculus as:

b [+ DG -t -2)n+3) _ [0 n odd,
Sy (x)dr = — _ o
e s O even,

(13)
/ 2 (2)de = (4nS — 8n® — 45n4 + 98n3 + 131n2 — 324n + 108)(b — a)2"+! | ”

36(n')2(2n _ 3)(4”2 _ 1)22n

(b—a)? _

12 . =2,
law [Snl@)l =4 X% §a> n =3, (15)
velet] i)

3ni2n Tl
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Before we end this section, we introduce the notations
I= / f(a

& (k=1D)EE+3)(b—a)® ! o atb
2:: 3(2k + 1)122F £ 2 )

(b—a)?
24

Fu= 0= (S0 + C ) - £ @

3. For functions whose (n — 1)th derivatives are Lipschitzian type
Recall that a function f : [a,b] — R is said to be L-Lipschitzian on [a, b] if

[f(x) = f(y)l < Llz —y|
for all ,y € [a,b],where L > 0 is given, and, it is said to be (I, L) -Lipschitzian
on [a,b] if
Wz —y) < flz) - fly) < Lz —y)
foralla <x <y <bwherel,L € Rwithl < L.
From [3], we get that if h,g : [a,b] — R are such that h is Riemann-integral

on [a,b] and g is L-Lipschitzian on [a,b], then [ " h(t)dg(t) exists and

‘/ #)dg(t) <L/ B (t)|dt. (16)

Theorem 3.1. Let f : [a,b] — R be a mapping such that derivative f—1)
(n > 2) is (I, L)-Lipschitzian on [a,b]. Then we have

(=D)™(L+D[1+ (=1)")(b—a)""(n —2)(n+3)

I-— Fn
‘ + 3(n + 1)!2n+3
\/g(b—a)3 . (17>
S Liil X W;)(bi )n+1 n = 27
2 - 3(:;1)!2"!1 ) n 2> 3.

Proof. By (10) and (13) we get

(=D)L +D[1+ (=1)"](b—a)"(n—2)(n+3)
3(n + 1)12n+3

[ sl - L

L+1 L—-
Then notice that £~V (z) — T+$ is

(16), we have

I-F,+

l
-Lipschitzian on [a, b] and by using

(D" (L 4D+ (=)"](b—a)" (n —2)(n +3)
3(n+ 1)12n+3

]I—Fn+

_1 b
x/ 15, (2)|dar.

Hence, the inequality (17) follows from (16) and (12). O
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Corollary 3.2. Let f : [a,b] — R be a mapping such that derivative f—1)
(n > 2) is L-Lipschitzian on [a,b]. Then we have

{ V3(b—a)® n=2
)1 _F|<Lx 5T ’
n| = (n+3)(n—2)(b—a)

3(nt1)ientl n=3.

4. Bounds in terms of some Lebesgue norms
Theorem 4.1. Let f : [a,b] — R be a mapping such that the (n—1)th derivative
f=Y (> 2) is absolutely continuous on [a,b]. If f™) € Ly[a,b], then we have

V3(b—a)® n=2,

’I - F"‘ <o x { (4 3) (n—2)(b—a)"*!
3(ntD)l2nFl

n > 3.

where || f™) | o = ess SUDP e (q,0] |f() ()| is the usual Lebesgue norm on Lo |a, b].
Proof. We can obtain the result by taking L = || f(||o in Corollary 3.2. O

Theorem 4.2. Let f : [a,b] — R be a mapping such that the (n—1)th derivative
f=Y (0 >2) is absolutely continuous on [a,b]. If f™) € Ly[a,b], then we have

(b;;)Z’ n=2,

_ V3(b—a)® _
’I o (b—il)‘?in—’a(nw) nos
T =4

where || f(V]; == f |f) (z)|dx is the usual Lebesgque norm on Lila,b].
Proof. By using the 1dent1ty (10) we get

f™(z)dz| < sup |Sn(z \/ |F™) (2)|da.

z€a,b]

Then the conclusion follows from (15). O

Theorem 4.3. Let f : [a,b] — R be a mapping such that the (n—1)th derivative
fO=Y (0 >2) is absolutely continuous on [a,b]. If f) € Lala,b], then we have

E

£ j2(b — a)" 2 [4nS — 8n® — 4504 + 98n3 + 131n2 — 324n + 108
6nl2m (2n —3)(4n? — 1)

1

where || fV ||y == {f;[f(") (x)}%lx} * is the usual Lebesque norm on Lo[a,b).

Proof. By using the identity (10) we get

1
ro@s] <15 [ 152w}

Then the conclusion follows from (14). O

‘I—Fn
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5. Non symmetric bounds

Theorem 5.1. Let f : [a,b] — R be a mapping such that the (n—1)th derivative
fO=D (> 2) is absolutely continuous with v, < f((x) < T, a.e. on [a,b],
where v, Iy € R are constants, then we have
(=1)"Tn +7)[1 + (=1)")(b — )" (n — 2)(n + 3)

3(n + 1)l2n+3

I—F,+

V3(b—a)® _
cTu—m Yaboa)y n=2,

- X n n— —a n+1
? { : Hg((nﬂz))!(zbnﬂ) ) n > 3.

Proof. By (10) and (13) we get

(=D)"(@Tn + 1) + (=1)"](b = )" (n = 2)(n + 3)
I—F, +
3(n + 1)12n+3
’ Lo+ n
= 1" [ S@)[f @) - 2
then notice that ‘f(”)(x) _In -21-’Yn < I ; Tn . on [a, b], we have

(=1)" (T + )L+ (=D)"](b = a)"*(n — 2)(n + 3)
3(n+ 1)l12n+3

\I—Fn+

F _ b
< T / 1S, ()| d.
We complete the proof from (12). O

Remark. Applying Theorem 5.1 for n = 2,3, we get (3), (6), respectively.

Theorem 5.2. Let f : [a,b] — R be a mapping such that the (n—1)th derivative
f=Y (n > 2) is absolutely continuous with v, < f™(z) a.e. on [a,b], where
Yn € R is a constant, then we have

(=) "L+ (=D"](b = a)" " (n — 2)(n +3)

I—F,
* 3(n + 1)l12n+2
(b—a)® _
\[12 ', n =z,
< (Dn - 'Vn) X 3(2b1;3a) ; n = 3,
—a)" T (n n—
Goa iy sy

where

b £U700) = 10V (a)
b—a
Proof. By (10) and (13) we get

(=D)L + (=D"](b—a)" " (n - 2)(n +3)

I1-F,
+ 3(n + 1)12n+2
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| 5,0 [ ) — 7,

then notice that f(")(z) —~, > 0 a.e. on [a,b], we have

(=)™ + (=1)"](b — @)L (n — 2)(n + 3) |
3(n+ 1)12n+2

‘I—Fn+

From (15), we get the desired result. O
Remark. Applying Theorem 5.2 for n = 2,3, we get (4), (7), respectively.

Theorem 5.3. Let f : [a,b] — R be a mapping such that the (n—1)th derivative
f=Y (0 > 2) is absolutely continuous with f(x) <T,, a.e. on [a,b], where
I', € R is a constant, then we have

(=D)"Cn[1 4+ (=1)")(b— a)"* (n — 2)(n +3)

I—F,— oTES
3
et n=2, (18)
4
< (T — Dy) x § V3ol n=3,
—a)" T (n n—
(b—a) 3n!(?ﬁ)( 3)7 n >4,

where D, is defined in Theorem 5.2.

Proof. The proof of inequalities (18) is similar to the proof of Theorem 5.2 and
so is omitted. O

Remark. Applying Theorem 5.3 for n = 2,3, we get (5), (8), respectively.

6. Another sharp bound

In this section, we derive two sharp error inequalities when n is an odd and
an even integer, respectively.

Theorem 6.1. Let f : [a,b] — R be a mapping such that the (n—1)th derivative

fO=Y (n > 2) is absolutely continuous on [a,b]. If f™ € Ly[a,b] and n is an
odd integer. Then we have

1
(b—a)"T2 [4n6 — 8nd — 45n4 + 98n3 + 131n2 — 324n + 108
< \o(fm). (19
=" 6nl2n (2n — 3)(4n% — 1) olftm). (19)

’I_Fn

2
where o(-) is defined by o(f) = |3 — ﬁ(f: f(x)dx) . Inequality (19) is
the best possible in the sense that the constant

1 4nb — 8n® — 45n* 4+ 98n3 + 131n? — 324n + 108
6n!2n (2n — 3)(4n% —1)
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can not be replaced by a smaller one.
Proof. By using the identity (10) and (13) we get

_ ‘/b S(@) ™ (@) de| = (/b S (x) [f(”)(x)—ﬁ/abf(")(t)dt]daz‘

< ([ s ([ oo 0w )

B ((4n6 —8n° — 45n* 4 98n3 4 131n? — 324n + 108)(b — a)*"** )%
N 36(n!)2(2n — 3)(4n2 — 1)22n
(n—1) (n—1) 2,1
my2 IS (b)—f (@) 2
(113 L )
_(b— a)"'*'% 4nS — 8nb — 45n* + 98n3 4 131n2 — 324n + 108
~ 6nl2n (2n — 3)(4n2 — 1)

‘I—Fn

o(fm).

To prove the sharpness of (19), we suppose that (19) holds with a constant
C >0 as

< C(b—a) "2y /a(fm). (20)

We may find a function f : [a,b] — R such that the (n — 1)th derivative f~1)
(n > 2) is absolutely continuous on [a, b] as

‘I_Fn

z—a)"tt b—a)?(z—a)” ! a

FD () = { ((n+)1)+!1 = { 2112(;_1))! o TE€ [a, %37,
=Y @0t -a)e—t)" atb

G s T E( 2.0

It follows that

n! 242(n72)! , ’
pyn b - "
= n!) —{ gzx(giz))! ;o we (4.

F0 (@) =

{ @—a)* _ (b—a)*(z—a)""? z € [a, GTH)L

Then we can find that the left-hand side of inequality (20) becomes
(4n8 — 8nS — 45n* + 98n3 + 131n? — 324n + 108)(b — a)?" !

L.H.5(20) = 36(n!)2(2n — 3)(4n2 — 1)22n

(21)
and the right-hand side of inequality (20) becomes
4nb — 8n® — 45n* + 98n3 + 131n2 — 324n + 108
36(n!)2(2n — 3)(4n2 — 1)22n

) %C(b — )L,
(22)

R.H.S(20) = (

From (20), (21) and (22), we get

C>

1 \/ AnS — 8nb — 4504 + 9803 + 131n2 — 324n + 108
~ 6nl2n

(2n —3)(4n? — 1) ’

which proving that the constant ol (@n=3)(n?=1)
best possible in (19). O

6_]n5— 4 3 2_ .
1 \/4n 8n°—45n44+98n3+131n2—324n+108 is the
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Theorem 6.2. Let f : [a,b] — R be a mapping such that the (n—1)th derivative
f=Y (0 > 2) is absolutely continuous on [a,b]. If f™ € Lsla,b] and n is an
even integer. Then we have

(b—a)"(n—2)(n+3) ., .
3(n 1 1)l2n+ 1 (b) = £ (a)]

(b— )"+% An8 — 8n7 — 61nS 4 114nd + 247n4 — 424n3 + 32n2
6(n + 1)127 (2n —3)(4n? — 1)

I-F,+

<

a(f).
(23)
where o(-) is defined in Theorem 6.1. Inequality (23) is the best possible in the

4n8 —8n7—61n8+114n54+247n%4—391n34+32n2
(2n—3)(4n2—1)

can not

sense that the constant 6(n+11)!2n \/
be replaced by a smaller one.

Proof. By using the identity (10) and (13) we get
(b—a)™(n—2)(n+3)

I TF e A OB A O]
)f(")(z)dz— L/b Sn(z)d:v/abf(")(z)dx‘
e = Sn(O)F " () = £ (0)]dad

< / / dadt) / / [ (@ f<”)(t)]2drdt)%

2(b
</ e —— /snu Vo )%</a[f<"><ac>}2daf:—b_la(/abf“”@”d”ﬁf)é

1
(4n8 — 8n7 — 61n8 + 114n® + 247n* — 424n3 + 32n2)(b — a)?n 11\ 2
B 36[(n + 1)!]2(2n — 3)(4n2 — 1)227

<” sz - BOTI®) - f<n1)<an2>

[NE

b—a
We now suppose that (23) holds with a constant C' > 0 as

(24)

We may find a function f : [a,b] — R such that the (n — 1)th derivative f(~1)
(n > 2) is absolutely continuous on [a, b] as

‘I—FnJr

(n+1)J!rl - 242(71,71)! R 3(7H1)!2n+2 ’
(z=b) (b—a)”(z—b) _ (b—a) (n—=2)(n+3) = (“T“‘b,b].

@)™ (-a)?@—a)""l | (b—a)" " (n-2)(n+3) ath
£ () { + x € [a, 24F2],

(n+1)! 24(n—1)! 3(n1y2nt? ,
It follows that
(z—a)"  (b—a)*(z—a)"~? atb
f™(z) = { Wl T om0 L€ la, “57],

z—b)" b—a)?(z—b)" 2 a
- e, we (45
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Then we can find that the left-hand side of inequality (24) becomes

(4n® — 8n" — 61n8 + 114n> + 247n* — 424n3 + 32n?)(b — a)** !
36[(n + 1)!]2(2n — 3)(dn? — 1)22"

L.H.5(24) =

(25)
and the right-hand side of inequality (24) becomes

4n® — 8n” — 61n° 4 114n° + 247n* — 424n3 + 32n°\ 3
R.H.S(24) = ( ) C(b—a)?" .
(24) 36[(n + 1)1J2(2n — 3)(4n2 — 1)22n (b-a)
(26)
It follows from (24), (25) and (26) that
- 1 4nd — 8n7 — 61n6 4 114n5 + 247n* — 42403 + 32n2
= 6(n+1)12n (2n —3)(4n2 — 1) ’

: 1 4n8 —8n7—61n6+114n54+247n*—424n3432n2
proving that the constant HOESNPR \/ Cn-3){nZ-1) is the

best possible in (23). O
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