References
- R. Ayala, E. Domnguez, A.R. Frances, and A. Quintero, Homotopy in digital spaces, Discrete Applied Math, 125(1) (2003), 3-24. https://doi.org/10.1016/S0166-218X(02)00221-4
- C. Berge, Graphs and Hypergraphs, 2nd ed., North-Holland, Amsterdam, 1976.
- L. Boxer, Digitally continuous functions, Pattern Recognition Letters, 15 (1994), 833-839. https://doi.org/10.1016/0167-8655(94)90012-4
- L. Boxer, A classical construction for the digital fundamental group, Jour. of Mathematical Imaging and Vision, 10 (1999), 51-62. https://doi.org/10.1023/A:1008370600456
- L. Boxer and Ismet Karaca, The Classification of Digital Covering Spaces, Jour. of Mathematical Imaging and Vision, 32 (2008), 23-29. https://doi.org/10.1007/s10851-008-0088-z
- S.E. Han, On the classification of the digital images up to digital homotopy equivalence, Jour. Comput. Commun. Res. 10 (2000), 207-216.
- S.E. Han, Computer topology and its applications, Honam Math. Jour. 25(1) (2003), 153-162.
- S.E. Han, Digital coverings and their applications, Jour. of Applied Mathematics and Computing, 18(1-2) (2005), 487-495.
- S.E. Han, Non-product property of the digital fundamental group, Information Sciences 171(1-3) (2005), 73-91. https://doi.org/10.1016/j.ins.2004.03.018
- S.E. Han, On the simplicial complex stemmed from a digital graph, Honam Mathematical Journal, 27(1) (2005), 115-129.
- S.E. Han, The k-fundamental group of a computer topological product space, preprint (2005), 1-22.
- S.E. Han, Discrete Homotopy of a Closed k-Surface, LNCS 4040, Springer-Verlag, Berlin, (2006), 214-225.
- S.E. Han, Strong k-deformation retract and its applications, Journal of the Korean Mathematical Society, 44(6) (2007), 1479-1503. https://doi.org/10.4134/JKMS.2007.44.6.1479
- S.E. Han, Comparison among digital fundamental groups and its applications, Information Sciences, 178 (2008), 2091-2104. https://doi.org/10.1016/j.ins.2007.11.030
-
S.E. Han, Equivalent (
$k_0$ ,$k_1$ )-covering and generalized digital lifting, Information Sciences, 178(2) (2008), 550-561. https://doi.org/10.1016/j.ins.2007.02.004 -
S.E. Han, The k-homotopic thinning and a torus-like digital image in
$Z^n$ , Journal of Mathematical Imaging and Vision, 31(1) (2008), 1-16. https://doi.org/10.1007/s10851-007-0061-2 - S.E. Han, Cartesian product of the universal covering property, Acta Applicandae Mathematicae, 108 (2009), 363-383. https://doi.org/10.1007/s10440-008-9316-1
- S.E. Han, Remark on a generalized universal covering space, Honam Mathematical Jour. 31(3) (2009), 267-278. https://doi.org/10.5831/HMJ.2009.31.3.267
-
S.E. Han, KD-(
$k_0$ ,$k_1$ )-homotopy equivalence and its applications, Journal of Korean Mathematical Society, 47(5) (2010), 1031-1054. https://doi.org/10.4134/JKMS.2010.47.5.1031 - S.E. Han, Multiplicative property of the digital fundamental group, Acta Applicandae Mathematicae, 110(2) (2010), 921-944. https://doi.org/10.1007/s10440-009-9486-5
- S.E. Han, Ultra regular covering space and its automorphism group, International Journal of Applied Mathematics & Computer Science, 20(4) (2010), 699-710.
-
S.E. Han, Study on topological spaces with the semi-
$T_{1/2}$ separation axiom, Honam Mathematical Journal, 35(4) (2013), 707-716. https://doi.org/10.5831/HMJ.2013.35.4.707 - S.E. Han, An equivalent property of a normal adjacency of a digita product, Honam Mathematical Journal, 36(3) (2014), 199-215. https://doi.org/10.5831/HMJ.2014.36.1.199
- S.E. Han, Remarks on simply k-connectivity and k-deformation retract in digital topology, Honam Mathematical Journal, 36(3) (2014), accepted. https://doi.org/10.5831/HMJ.2014.36.3.519
- S.E. Han and Sik Lee, Remarks on digital products with normal adjacency relations, Honam Mathematical Journal, 35(3) (2013), 515-424. https://doi.org/10.5831/HMJ.2013.35.3.515
-
S.E. Han and B.G. Park, Digital graph (
$k_0$ ,$k_1$ )-isomorphism and its applications, http://atlas-conferences.com/c/a/k/b/36.htm (2003). -
S.E. Han and B.G. Park, Digital graph (
$k_0$ ,$k_1$ )-homotopy equivalence and its applications, http://atlas-conferences.com/c/a/k/b/35.htm (2003). - In-Soo Kim, S.E. Han, Digital covering therory and its applications, Honam Mathematical Journal, 30(4) (2008), 589-602. https://doi.org/10.5831/HMJ.2008.30.4.589
- E. Khalimsky, Motion, deformation, and homotopy in finite spaces, Proceedings IEEE International Conferences on Systems, Man, and Cybernetics, (1987), 227-234.
- T.Y. Kong, A digital fundamental group, Computers and Graphics, 13 (1989), 159-166. https://doi.org/10.1016/0097-8493(89)90058-7
- T.Y. Kong, A. Rosenfeld, Topological Algorithms for the Digital Image Processing, Elsevier Science, Amsterdam, 1996.
- R. Malgouyres, Homotopy in 2-dimensional digital images, Theoretical Computer Science, 230 (2000), 221-233. https://doi.org/10.1016/S0304-3975(98)00347-8
- A. Rosenfeld, Continuous functions on digital pictures, Pattern Recognition Letters, 4 (1986), 177-184. https://doi.org/10.1016/0167-8655(86)90017-6
Cited by
- COMPARISON AMONG SEVERAL ADJACENCY PROPERTIES FOR A DIGITAL PRODUCT vol.37, pp.1, 2015, https://doi.org/10.5831/HMJ.2015.37.1.135