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THE GREEN FUNCTION AND THE SZEGŐ KERNEL

FUNCTION

Young-Bok Chung

Abstract. In this paper, we express the Green function in terms of
the classical kernel functions in potential theory. In particular, we
obtain a formula relating the Green function and the Szegő kernel
function which consists of only the Szegő kernel function in a C∞

smoothly bounded finitely connected domain in the complex plane.

1. Introduction

It is a classical fact (see [5]) that the Green’s function gΩ(z, a) asso-
ciated to a C∞ smoothly bounded finitely connected domain Ω and a
singular point a ∈ Ω is related to the classical Bergman kernel function
K(z, a) associated to Ω via

K(z, a) =
−2

π

∂2gΩ(z, a)

∂z∂a
.

Since the Bergman kernel function also relates to the Szegő kernel func-
tion in an explicit way (see [5] again), the Green function can be essen-
tially represented in terms of the Szegő kernel function. In fact, Bell [1]
proved that the classical Drichlet problem can be solvable in terms of the
Szegő kernel function and he found an explicit formula for the solution
of the Dirichlet problem in terms of the Szegő projection which implies
that the Green function is represented in terms of the Szegő projection.

In this paper, we find an explicit formula relating the Green function
and the Szegő kernel function in more detail and in more readable way.
In particular we would like to obtain an identity between them which
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consists of only the Szegő kernel function in a C∞ smoothly bounded
finitely connected domain.

2. Preliminaries and Some Notations

Suppose that Ω is a finitely connected bounded domain in the plane
with C∞ smooth boundary. The Cauchy integral formula says that for
any homomorphic function f in a neighborhood of Ω and for any point
a in Ω, the value of f at a is represented by the boundary values of f
via

(2.1) f(a) =
1

2πi

∫
bΩ

f(z)

z − a
dz.

If we introduce the classical L2 inner product < , > defined by

< u, v >=

∫
bΩ
u v ds,

where ds is the differential element of arc length on the boundary bΩ,
the integral formula (2.1) is equivalent to the identity

f(a) =< f,Ca >,

where Ca(z) =
1

2πi

T (z)

z − a
is the Cauchy kernel and T is the unit tan-

gent vector function on bΩ pointing in the direction of the standard
orientation of bΩ. This motivates to studying on the Hardy space of the
boundary of Ω as follows.

Let L2(bΩ) be the Hilbert space completion of C∞(bΩ) with respect
to the inner product < · , · > and let H2(bΩ) denote the classical Hardy
space associated to Ω which is the space of holomorphic functions on
Ω with L2-boundary values in bΩ. Since H2(bΩ) is regarded as the
completion of the restrictions of holomorphic functions in C∞(Ω) to bΩ
in L2(bΩ), it follows from the inequality |f(a)| ≤ ‖f‖L2(bΩ)‖Ca‖L2(bΩ)

that the evaluation function at a ∈ Ω is a continuous linear functional
on H2(bΩ). Thus, given a ∈ Ω, we can apply the Riesz Representation
Theorem to the linear functional on H2(bΩ) to get a unique function
Sa ∈ H2(bΩ) such that for all f ∈ H2(bΩ),

f(a) =< f, Sa >=

∫
bΩ
f Sa ds.

On the other hand, since H2(bΩ) is a closed subspace of L2(bΩ), there
exists the orthogonal projection of L2(bΩ) onto H2(bΩ) called the Szegő
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projection which is denoted by

P : L2(bΩ)→ H2(bΩ).

Since for all f ∈ H2(bΩ),

< f, Sa >= f(a) =< f,Ca >=< f, P (Ca) >

and P (Ca) ∈ H2(bΩ), the uniqueness property for the function Sa im-
plies that

P (Ca) = Sa

and we call Sa the Szegő kernel for the the Szegő projection P and is
denoted by Sa(z) = S(z, a).

It is well known (see [1], [2]) that any u ∈ L2(bΩ) has an orthogo-
nal decomposition as a direct sum of the Hardy space H2(bΩ) and the
orthogonal complement H2(bΩ)⊥ of the Hardy space via

(2.2) u = P (u) + T P (uT ).

There is also a special kernel function which is the kernel for the orthogo-
nal projection P⊥ of the Szegő projection P in a sense. The Garabedian
kernel function L(z, a) is defined by

(2.3) L(z, a) =
1

2π(z − a)
+ P

(
iCaT

)
(z) =

1

2π(z − a)
+ < iCaT , Sz > .

It thus follows that the Garabedian kernel function is written in terms
of the single Szegő kernel function via

L(z, a) =
1

2π

(
1

z − a
−
∫
bΩ

S(z, ζ)

ζ − a
dsζ

)

=

1− (z − a)

∫
bΩ

S(z, ζ)

ζ − a
dsζ

2π(z − a)
.

(2.4)

On the other hand, it is easy to see from (2.3) that for fixed a ∈ Ω, L(z, a)
is a meromorphic function on Ω with a single simple pole at z = a having

residue
1

2π
which extends C∞ smoothly up to the boundary of Ω. It is

also known (see [1]) that L(z, a) never vanishes for all (z, a) ∈ Ω × Ω
with z 6= a. An important property about the Szegő kernel and the
Garabedian kernel to which we often refer in this paper is

(2.5) L(z, a) = i S(z, a) T (z), (z, a) ∈ bΩ× Ω.
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It is very interesting to see that when Ω is simply connected, given a ∈ Ω,
the quotient map

fa(z) =
S(z, a)

L(z, a)

is the Riemann mapping function associated to the pair (Ω, a) which is
a biholomorphic mapping of Ω onto the unit disc with fa(a) = 0 and
f ′a(a) > 0, having an extremal property which maximizes h′(a) among
all holomorphic functions h mapping Ω into the unit disc making h′(a)
real valued (see [6]).

Now we want to study on the Green function for the purpose of
expressing it in terms of the Sezgő kernel function. Let gΩ(z, a) be
the Green function associated to (Ω, a). It is harmonic in Ω \ {a}, ex-
tends C∞ smoothly to the boundary of Ω and vanishes on bΩ such that
gΩ(z, a) + ln|z − a| has a removable singularity at a. In virtue of the
uniqueness of solution of the Dirichlet problem, it is easy to see that it
is a conformally invariant quantity. In other words, if ϕ : Ω1 → Ω2 is a
biholomophic mapping between C∞ bounded domains Ω1 and Ω2 in the
plane, then

gΩ1(z, a) = gΩ2(ϕ(z), ϕ(a)).

Notice that when U is the unit disc, the Green function gU (z, 0) is ob-
viously equal to −ln|z| and the Riemann mapping function f(U,a)(z) is

equal to
z − a
1− az

. So, the Green function gU (z, a) associated to (U, a) is

given by

gU (z, a) = gU (f(U,a)(z), f(U,a)(a)) = −ln

∣∣∣∣ z − a1− az

∣∣∣∣ .
Hence in the case of a simply connected domain Ω, the Green function
associated to (Ω, ζ) is given by

gΩ(z, ζ) = gU
(
f(Ω,a)(z), f(Ω,a)(ζ)

)
= −ln

∣∣∣∣∣ f(Ω,a)(z)− f(Ω,a)(ζ)

1− f(Ω,a)(ζ)f(Ω,a)(z)

∣∣∣∣∣ .
In particular, letting ζ = a in the above identity and using f(Ω,a)(z) =
S(z, a)

L(z, a)
and (2.4), we can express the Green function associated to the

simply connected domain Ω and the point a ∈ Ω in terms of only one
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function of the Sezgő kernel function via

gΩ(z, a) = −ln
∣∣f(Ω,a)(z)

∣∣ = −ln

∣∣∣∣∣∣∣∣
2π(z − a)S(z, a)

1− (z − a)

∫
bΩ

S(z, ζ)

ζ − a
dsζ

∣∣∣∣∣∣∣∣ .
It is natural to ask whether we can do the same thing for the case

of a finitely connected domain. There is a kind of generalization of
the Riemann mapping function to a finitely connected domain which is
called the Ahlfors map. For a finitely connected n-connected domain
Ω in the plane with C∞ smooth boundary and a ∈ Ω, the Ahlfors
map fa (we use the same notation as the Riemann mapping function
for convenience) associated to the pair (Ω, a) is the unique solution to
the extremal problem: among all holomorphic functions h mapping Ω
into the unit disc, find the one making h′(a) real-valued and as large
as possible. It is well known (see [6], [3], [4]) that the function fa is an
n-to one proper holomorphic covering map of Ω onto the unit disc and
is equal to the quotient

(2.6) fa(z) =
S(z, a)

L(z, a)

of the Szeő kernel and Garabedian kernel functions.

3. Main results

Now suppose that Ω is a finitely connected n-connected domain in
the plane, n > 1 with C∞ smooth boundary and fix a ∈ Ω. Note
that the Ahlfors map fa has n zeros in Ω and the Garabedian kernel
function L(z, a) has a single simple pole at z = a which does not vanish
in Ω. It thus follows from (2.6) that S(z, a) has n − 1 zeroes in Ω
counting multiplicities. Let a1, a2, · · · , ak be distinct zeroes of Sa in Ω
with multiplicities m1,m2, · · · ,mk, respectively, such that m1 + m2 +
· · · + mk = n − 1. Choose points β1, β2, · · · , βn−1 from each of the
bounded connected components of the complement of Ω in C. For each
j = 1, 2, · · · , n − 1, it follows from the orthogonal decomposition (2.2)
of the function Sa ln | · −βj | that

Sa(z) ln |z − βj | = P (Sa ln | · −βj |)(z) + T (z) P ( T Sa ln | · −βj |)(z).
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Then using the identity (2.5), we get

ln |z− βj | =
P (Sa ln | · −βj |)(z)

Sa(z)
+

(
P ( T Sa ln | · −βj |)(z)

La(z)

)
, z ∈ bΩ.

Notice that the function ln |z − βj | is harmonic in a neighborhood of Ω
and the second term of the right hand side of the above identity is anti-
holomorphic in Ω and its conjugate is in H2(bΩ) because of the single
simple pole of L(z, a) at z = a. Since the set Ω is n-connected with
n > 1, it follows from the argument principle that the numerator of the
first term

P (Sa ln | · −βj |)

of the right hand side must have a pole at one of the zeroes a1, a2, · · · , ak
of Sa. Similarly as considering a linear combination of functions ln |z −
βj |, j = 1, 2, · · · , n − 1, we can also show that a linear combination of
the functions P (Sa ln | ·−βj |)(z), j = 1, 2, · · · , n−1 must have a pole at
one of the zeroes a1, a2, · · · , ak. This implies that the system of linear
equations



P (Sa ln | · −β1|)(a1) · · · P (Sa ln | · −βn−1|)(a1)
P (Sa ln | · −β1|)′(a1) · · · P (Sa ln | · −βn−1|)′(a1)

· · ·
· · ·
· · ·

P (Sa ln | · −β1|)(m1−1)(a1) · · · P (Sa ln | · −βn−1|)(m1−1)(a1)
· · ·
· · ·
· · ·

P (Sa ln | · −β1|)(ak) · · · P (Sa ln | · −βn−1|)(ak)
P (Sa ln | · −β1|)′(ak) · · · P (Sa ln | · −βn−1|)′(ak)

· · ·
· · ·
· · ·

P (Sa ln | · −β1|)(mk−1)(ak) · · · P (Sa ln | · −βn−1|)(mk−1)(ak)





λ1

λ2

·
·
·
·
·
·
·
·
·
·
·
·

λn−1


= 0

(3.1)

has a trivial solution λ1 = λ2 = · · · = λn−1 = 0 and hence the coefficient
matrix A of (3.1) is nonsingular.

Now let µ1, µ2, · · · , µn−1 be the solution of the system of equations
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(3.2) A



µ1

µ2

·
·
·
·
·
·
·
·
·
·
·
·

µn−1



=



P (Sa ln | · −a|)(a1)
P (Sa ln | · −a|)′(a1)

·
·
·

P (Sa ln | · −a|)(m1−1)(a1)
·
·
·

P (Sa ln | · −a|)(ak)
P (Sa ln | · −a|)′(ak)

·
·
·

P (Sa ln | · −a|)(mk−1)(ak)



.

Then for each i = 1, · · · , k,

P

Sa ln | · −a| −
n−1∑
j=1

µjSa ln | · −βj |

 (ai)

= P (Sa ln | · −a|) (ai)−
n−1∑
j=1

µjP (Sa ln | · −βj |) (ai)

= 0

and similarly for i = 1, · · · , k and for l = 1, · · · ,mi,

dmi−l

dzmi−l
P

Sa ln | · −a| −
n−1∑
j=1

µjSa ln | · −βj |

∣∣∣∣∣∣
z = ai

= 0.

It then follows that the function

P
(
Sa ln | · −a| −

∑n−1
j=1 µjSa ln | · −βj |

)
Sa

is holomorphic in H2(bΩ). We apply the orthogonal decomposition (2.2)

to the function Sa ln | · −a| −
∑n−1

j=1 µjSa ln | · −βj | and divide by Sa to
obtain
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ln |z−a| −
n−1∑
j=1

µj ln |z − βj |

=

P

Sa ln | · −a| −
n−1∑
j=1

µjSa ln | · −βj |

 (z)

S(z, a)

+
T (z)

S(z, a)
P

T Sa ln | · −a| −
n−1∑
j=1

µjSa ln | · −βj |

 (z),

z ∈ bΩ

=
1

S(z, a)
P

Sa ln | · −a| −
n−1∑
j=1

µjSa ln | · −βj |

 (z)

+

P
(
i T Sa ln | · −a| −

∑n−1
j=1 µjSa ln | · −βj |

)
(z)

L(z, a)

,
where we used the identity (2.5). Hence the holomorphic property of
the first term of the above identity implies that the harmonic extension
of the function ln |z − a| to Ω is given by

n−1∑
j=1

µj ln |z − βj |+
1

S(z, a)
P

Sa ln | · −a| −
n−1∑
j=1

µjSa ln | · −βj |

 (z)

+

P
(
i T Sa ln | · −a| −

∑n−1
j=1 µjSa ln | · −βj |

)
(z)

L(z, a)

.
Hence we have proved the following theorem.

Theorem 3.1. Let n be a positive integer with n > 1. Suppose
that Ω is a finitely n-connected domain in the plane with C∞ smooth
boundary. Let a ∈ Ω be fixed. Let a1, a2, · · · , ak be zeroes of Sa in Ω
with multiplicities m1,m2, · · · ,mk, respectively such that m1 + m2 +
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· · ·+mk = n−1. Let points β1, β2, · · · , βn−1 be chosen from each of the
bounded connected components of the complement of Ω in C.

Then the Green function gΩ(z, a) associated to the pair (Ω, a) is given
by

gΩ(z, a) = − ln |z − a|+
n−1∑
j=1

µj ln |z − βj |

+
1

S(z, a)

〈
S(·, a) ln | · −a| −

n−1∑
j=1

µjS(·, a) ln | · −βj |, S(·, z)

〉
bΩ

+
2π(z − a)

〈
S(·, z), i T Sa ln | · −a| −

∑n−1
j=1 µjSa ln | · −βj |

〉
bΩ

1 + 2π(z − a) 〈S(·, z), i CaT 〉bΩ

,

where µ1, µ2, · · · , µn−1 are the constants satisfying

P (Sa ln | · −β1|)(a1) · · · P (Sa ln | · −βn−1|)(a1)
P (Sa ln | · −β1|)′(a1) · · · P (Sa ln | · −βn−1|)′(a1)

· · ·
· · ·
· · ·

P (Sa ln | · −β1|)(m1−1)(a1) · · · P (Sa ln | · −βn−1|)(m1−1)(a1)
· · ·
· · ·
· · ·

P (Sa ln | · −β1|)(ak) · · · P (Sa ln | · −βn−1|)(ak)
P (Sa ln | · −β1|)′(ak) · · · P (Sa ln | · −βn−1|)′(ak)

· · ·
· · ·
· · ·

P (Sa ln | · −β1|)(mk−1)(ak) · · · P (Sa ln | · −βn−1|)(mk−1)(ak)





µ1

µ2

·
·
·
·
·
·
·
·
·
·
·
·

µn−1



=



P (Sa ln | · −a|)(a1)
P (Sa ln | · −a|)′(a1)

·
·
·

P (Sa ln | · −a|)(m1−1)(a1)
·
·
·

P (Sa ln | · −a|)(ak)
P (Sa ln | · −a|)′(ak)

·
·
·

P (Sa ln | · −a|)(mk−1)(ak)



.
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