DOI QR코드

DOI QR Code

DERIVATIONS OF A COMBINATORIAL LIE ALGEBRA

  • Received : 2014.04.30
  • Accepted : 2014.07.01
  • Published : 2014.09.25

Abstract

We consider the simple antisymmetrized algebra $N(e^{A_P},n,t)_1^-$. The simple non-associative algebra and its simple subalgebras are defined in the papers [1], [3], [4], [5], [6], [8], [13]. Some authors found all the derivations of an associative algebra, a Lie algebra, and a non-associative algebra in their papers [2], [3], [5], [7], [9], [10], [13], [15], [16]. We find all the derivations of the Lie subalgebra $N(e^{{\pm}x_1x_2x_3},0,3)_{[1]}{^-}$ of $N(e^{A_p},n,t)_k{^-}$ in this paper.

Keywords

References

  1. Mohammad H. Ahmadi, Ki-Bong Nam, and Jonathan Pakianathan, Lie admissible non-associative algebras, Algebra Colloquium, 12(1), World Scientific, (March 2005), 113-120. https://doi.org/10.1142/S1005386705000106
  2. Matej Bresar, Mikhail A. Chebotar, Wallace S. Martindale, Function Indentities, Frontiers in Mathematics, Birkhauser, 2007.
  3. Seul Hee Choi and Ki-Bong Nam, The Derivation of a Restricted Weyl Type Non-Associative Algebra, Hadronic Journal, 28(3) (2005), 287-295.
  4. Seul Hee Choi, An algebra with right identities and its antisymmetrized algebra, Honam Mathematical Journal, 29(2) (2007), 213-222. https://doi.org/10.5831/HMJ.2007.29.2.213
  5. Seul Hee Choi and Ki-Bong Nam, Weyl type non-associative algebra using additive groups I, Algebra Colloquium, 14(3) (2007), 479-488. https://doi.org/10.1142/S1005386707000430
  6. Seul Hee Choi and Ki-Bong Nam, Derivations of a restricted Weyl Type Algebra I, Rocky Mountain Math. Journals, 37(6) (2007), 67-84. https://doi.org/10.1216/rmjm/1181069320
  7. Seul Hee Choi, Jongwoo Lee, and Ki-Bong Nam, Derivations of a restricted Weyl type algebra containing the polynomial ring, Communications in Algebra, 36(9) (September 2008), 3435-3446. https://doi.org/10.1080/00927870802107835
  8. Seul Hee Choi, Hong Gu Park, Moon-Ok Wang, and Ki-Bong Nam, Combinatorial Algebra and Its Antisymmetrized Algebra I, Algebra Colloquium, Accepted, 2012.
  9. James E. Humphreys, Introduction to Lie Algebras and Representation Theory, Springer-Verlag, New York, (1987), 7-21.
  10. Tsshiharu Ikeda, Naoki Kawamoto and Ki-Bong Nam, A class of simple subalgebras of Generalized W algebras, Proceedings of the International Conference in 1998 at Pusan (Eds. A. C. Kim), Walter de Gruyter Gmbh Co. KG, (2000), 189-202.
  11. Victor G. Kac, Description of Filtered Lie Algebra with which Graded Lie algebras of Cartan type are Associated, Izv. Akad. Nauk SSSR, Ser. Mat. Tom, 38 (1974), 832-834.
  12. Naoki Kawamoto, Atsushi Mitsukawa, Ki-Bong Nam, and Moon-Ok Wang, The automorphisms of generalized Witt type Lie algebras, Journal of Lie Theory, 13(2), Heldermann Verlag, (2003), 571-576.
  13. Jongwoo Lee and Ki-bong Nam, Non-Associative Algebras containing the Matrix Ring, Linear Algebra and its Applications 429(1) (1 July 2008), 72-78. https://doi.org/10.1016/j.laa.2008.02.005
  14. Ki-Bong Nam, Generalized W and H Type Lie Algebras, Algebra Colloquium 6(3) (1999), 329-340.
  15. Ki-Bong Nam, On Some Non-Associative Algebras Using Additive Groups, Southeast Asian Bulletin of Mathematics, 27, Springer Verlag, (2003), 493-500.
  16. Ki-Bong Nam and Moon-Ok Wang, Notes on Some Non-Associative Algebras, Journal of Applied Algebra and Discrete Structured, 1(3), 159-164.
  17. Donald P. Passman, Simple Lie algebras of Witt type, J. Algebra 206 (1998).
  18. Alexei N. Rudakov, Groups of Automorphisms of In nite-Dimensional Simple Lie Algebras, Math. USSR-Izvestija, 3 (1969), 707-722. https://doi.org/10.1070/IM1969v003n04ABEH000798
  19. Richard D. Schafer, Introduction to nonassociative algebras, Dover, (1995), 128-138.