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Abstract 
We propose a video denoising method based on Kalman filter to reduce the noise in video 
sequences. Firstly, with the strong spatiotemporal correlations of neighboring frames, motion 
estimation is performed on video frames consisting of previous denoised frames and current 
noisy frame based on intensity and structure tensor. The current noisy frame is processed in 
temporal domain by using motion estimation result as the parameter in the Kalman filter, 
while it is also processed in spatial domain using the Wiener filter. Finally, by weighting the 
denoised frames from the Kalman and the Wiener filtering, a satisfactory result can be 
obtained. Experimental results show that the performance of our proposed method is 
competitive when compared with state-of-the-art video denoising algorithms based on both 
peak signal-to-noise-ratio and structural similarity evaluations. 
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1. Introduction 

Digital video surveillance is prevalent in our daily life. Large numbers of monitoring 
cameras are installed in public and private places, such as government buildings, military 
bases, and car parks. To obtain high quality surveillance, video denoising techniques have 
been well studied in the field of image processing. Apart from denoising itself, these 
techniques can be used to increase compression efficiency, reduce transmission bandwidth, 
and improve the effectiveness of further processes, such as feature extraction, object detection, 
and pattern classification.  

Even though video and image denoising can be considered different research topics, some 
basic image denoising ideas and algorithms are borrowed for video denoising, such as 
Gaussian filter, bilateral filter [1-2], domain transformation [3-5], similar blocks matching 
[4-6, 28-29], sparse representations [30-32] etc. Compared to a single image, video can 
provide sufficient additional information from nearby frames, which can bring better 
denoising results. Moreover, with the emergence of new multi-resolution tools, such as the 
wavelet transform [7-8], video denoising methods performed in the transform domain have 
been proposed continually [9-13]. Zlokolica et al. [9] introduced new wavelet-based motion 
reliability measures, and performed motion estimation and adaptive recursive temporal 
filtering in a closed loop, which is followed by an intra-frame spatially adaptive filter. Rahman 
et al. [10] proposed a joint probability density function to model the video wavelet coefficients 
of any two neighboring frames, and then applied this statistical model for denoising. Jovanov 
et al. [11] reused motion estimation resources from a video-coding module for video denoising. 
They proposed a novel motion field-filtering step and a novel recursive temporal filter with the 
reliability of the estimated motion field appropriately defined. Yu et al. [12] integrated both 
spatial filtering and recursive temporal filtering into the 3-D wavelet domain and effectively 
exploited spatial and temporal redundancies. Maggioni et al. [13] exploited the temporal and 
nonlocal correlation of the video and constructed 3-D spatiotemporal volumes separately by 
tracking blocks along trajectories defined by motion vectors. Jin et al. [33] proposed a 
multi-resolution motion analysis method in the wavelet domain. In [34], the change was 
estimated in the 3D SCT domain. Lian et al. [35] used vector estimation of wavelet 
coefficients. In addition, other proposed video denoising methods, such as one that uses 
low-rank matrix completion [14], achieved relatively better results. 

Video denoising technology has made great progress over the previous decades. However, 
most existing methods cannot obtain ideal results when dealing with large noisy video 
sequences captured under low light environment. This requirement is urgently demanded in 
many fields, especially for security monitoring, where a camera is mounted at a stable position 
with a fixed angle in which the captured video sequences have relatively unchanged 
backgrounds. In practical applications, the characteristics of both still and moving objects 
must be clearly seen in the video sequences. This requirement can easily be satisfied during the 
day. However, at night, statistical noise due to low light illumination seriously affects the 
video sequences.  

In this paper, a novel video denoising method based on Kalman filter is proposed. Taking 
advantage of the strong spatiotemporal correlations of neighboring frames, motion estimation 
based on intensity and structure tensor [15-17] is performed by comparing current noisy frame 
with previous denoised frames. Then, based on motion estimation results, current noisy frame 
is processed in temporal domain using the Kalman filter [18]. During the filtering process, 
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different positions of the noisy frame have different filtering strengths according to the motion 
estimation results. Motion positions have weak filtering strength and keeping their motion 
characteristic is difficult, whereas still positions have strong filtering strength for reducing 
noise. Simultaneously, the noisy frame is also processed in the spatial domain using the 
Wiener filter [19]. Finally, by weighting the two denoised frames using Kalman and Wiener 
filtering methods, a satisfactory result can be obtained. The still region is obtained largely 
from Kalman filtering, while the motion region is the result of Wiener filtering. Experimental 
results show that the performance of our proposed method is effective over current competing 
video denoising methods. 

The remainder of the paper is organized as follows. Section 2 describes our proposed 
video denoising method. Section 3 provides quantitative quality evaluations of the denoising 
results. Section 4 discusses the experiments as well as the results. Finally, Section 5 concludes 
this article. 

2. Proposed Denoising Method 
Fig. 1 illustrates the diagram of our proposed video denoising method. The denoising of 
current noisy frame involves not only the frame itself, but also a series of previously denoised 
frames. Motion estimation is performed based on intensity and structure tensor between the 
current noisy frame and the previous denoised frames. Then, the estimation results guide the 
Kalman filtering on the current noisy frame. In this operation, the final denoised frame from 
Kalman filtering is needed. Simultaneously, Wiener spatial filtering is also performed on the 
current noisy frame. Thus, after processing, two denoised frames are obtained. One is obtained 
using Kalman filtering, and another is obtained using Wiener filtering. Finally, by weighting 
the two denoised frames, a satisfactory result can be obtained. 
 

 
Fig. 1. Diagram of proposed video denoising method 

 

2.1 Motion Estimation based on Intensity and Structure Tensor 
To take advantage of the strong correlations between adjacent frames, intensity and structure 
tensor based motion estimation is performed by comparing the current noisy frame with 
previous denoised frames.  
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2.1.1 Intensity based Motion Estimation 
In order to suppress the noise influence, a strong filter is firstly used to pre-process the noise 
images. Prefilter is frequently used in many denoising algorithms, such as VBM3D [4]. 
Considering the algorithm complexity and the noise suppressing ability, we employ the 
Gaussian filter with large kernel size. Then, the intensity distance could be calculated as 
follows. 
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In above equation, k  is the temporal index of the frame. In particular, i  is the current 
frame’s index, namely, ..., 2, 1, , 1, 2,...k i i i i i= − − + + . kp  is the pixel value in some 
position of the frame. In particular, ip  is the pixel value of the current frame. 

1
Kρ  is the 

Gaussian filter kernel with the standard variance 1ρ . ( , )Id k i  is the intensity distance between 
frame k  and frame i . 

Fig. 2(a1) and (a2) are the past and current frames with additive Gaussian white noise, 
whose σ =50. Before calculating the intensity distance, the two frames are prefiltered with a 
10×10 Gaussian filter whose 1ρ =5, and the results are shown in Fig. 2(b1) and (b2). The 
choice of the filter kernel follows the noise level. The larger the noise is, the larger the kernel 
size is. Then, the intensity distance is calculated based on this two prefiltered frames and the 
result is shown in Fig. 2(b3). 

 

  
(a1)                                     (a2) 

 
(b1)                                        (b2)                                              (b3) 

Fig. 2. Intensity based motion estimation. (a1) and (a2) are the past and current frame with additive 
Gaussian white noise (σ =50). (b1) and (b2) are the prefiltered results of (a1) and (a2) with a 10×10 
Gaussian filter whose 1ρ =5. (b3) is the intensity distance of (b1) and (b2). 
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2.1.2 Structure tensor based Motion Estimation 
Although the strong prefilter effectively suppresses the large scale noise, it destroys the edges 
of the motion area too. Some detail variations are also damaged and even lost. Weickert et al. 
[15-17] first proposed the structure tensor, which is used as a tool for analyzing image 
structure, extracting the geometric feature, etc. In this paper, the simple linear structure tensor 
is used to analyze the image. This simple linear structure tensor is defined as 

2

2
' ' '

2 ' ' 2 2
' ' '

( ( )) ( ) ( )
( ) * ( ) *

( ) ( ) ( ( ))
x x yT

x y y

I p I p I p
p K p p K

I p I p I p
σ σ σ

ρ ρ σ σ ρ
σ σ σ

 
= ∇ ⊗∇ =   

 
J       (2) 

In the above equation, ∇  is the image gradient operator, and 'pσ  is the Gaussian filtered 
image of input p  with the Gaussian standard variance 'σ . In addition, ⊗  is the structure 
tensor product. The image gradients '( )xI pσ  and '( )yI pσ  can be used in x  and y  directions. 

Moreover, * is the convolution of Gaussian filter 2Kρ  with standard variance 2ρ  and the 

structure tensor product. Generally, 2 'ρ σ> . The Gaussian filter 'σ  before gradient 
operation and the filter 2Kρ  play the role of the strong pre-filter. The Gaussian filter 2Kρ  
isotropically synthesizes the local neighborhood structure tensor information, and is thus, 
called “linear structure tensor.” 

2ρ
J  contains the image geometric structure information. By orthogonally decomposing 

2ρ
J , we obtain eigenvalues, 1λ  and 2λ , and eigenvectors, 1e  and 2e . The eigenvalues 
describe the strength of the direction of the eigenvectors, which reflect the direction of the 
image structures. The corresponding eigenvector 1e  of the maximum eigenvalue 1λ  indicates 
the direction of the maximum gradient contrast, i.e., the normal direction. The corresponding 
eigenvector 2e  of eigenvalue 2λ  indicates the tangential direction. 

Different image structures can be described using different eigenvalues. Usually, 1 2λ λ+  
is used to reflect the strength of the structure. Fig. 3(1) and (2) show the maps of the structure 
strength extracted from the noise frames in Fig. 2(a1) and (a2), respectively. 

When motion occurs, variation in the structure tensor is unavoidable. The structure tensor 
could be used to detect the motion. Thus, the structure tensor distance should be measured. 
Given that the structure tensor resides in non-Euclidean space, we use a Riemannian metric 
called Log-Euclidean metric [20] with simple and fast computations. The metric is computed 
as 

 

( )( ) ( )( )( )2 2

2
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 
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In the above equation, ( )Trace ⋅  is the trace of the matrix, and log( )⋅  is the structure tensor 

logarithmic operator defined in [20]. In addition, ( )
2 currentpρJ  represents the structure tensor of 

the current noisy frame, and ( )
2 ,past ipρJ  represents the structure tensor of the i-th previous 

denoised frame. Fig. 3(3) shows the Log-Euclidean metric distance of Figs. 3(1) and (2). 
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(1)                                             (2)                                                (3) 

Fig. 3. Structure tensor based motion estimation. (1) and (2) are the maps of the structure strength 
1 2λ λ+  extracted from the noise frames in Fig. 2(a1) and (a2). (3) is the Log-Euclidean metric distance 

of (1) and (2). 
 

Structure tensor based motion estimation is a good supplement for intensity based motion 
estimation. The intensity and structure tensor combined motion estimation is shown in Fig. 4. 
The combination follows: 

( , ) ( , ) ( , )IST ST Id k i d k i d k iα β= ⋅ + ⋅                                    (4) 
 

where α andβ are weighted parameters. In Fig. 4, α =0.1 and β =1. 
 

 
Fig. 4. Intensity and structure tensor combined change segmentation 

 

2.2 Motion Estimation based Kalman Filtering in Temporal Domain 
The discrete Kalman filter [18] can provide an efficient solution to the least squares method. 
Generally, the step is made up of two consecutive stages, namely, prediction and updating.  

The prediction equations are defined as 
1k k k k kx A x B u− +
−= +                                                      (5) 

and 
1

T
k k k k kp A p A Q− +

−= +                                                   (6) 
where the superscripts “-” and “+” denote “before” and “after” each measurement, 
respectively. Moreover, 1kx+

−  represents the estimated state matrix and 1kp+
−  represents the 

state covariance matrix of last state; kx−  and kp−  represent the a priori estimates of state matrix 
and state covariance matrix for the current state, respectively; and kA  represents the state 
transition matrix that determines the relationship between the present state and the previous 
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one. Matrix kB  relates the control input ku  to the current state, and 1kQ −  represents the 
covariance matrix of process noise. 

In our proposed method, we attempt to estimate the current frame based on the last one. 
Thus, the state matrix in the equations can be expressed by using the frame matrix. Otherwise, 
no control input is available, hence, 0ku = . The priori estimates for current state is assumed 
to be the same as that of the previous state, so the initial kA  is an identity matrix. Then, the 
following equations can be obtained. 

1k kx x− +
−=                                                           (7) 

1k k kp p Q− +
−= +                                                       (8) 

 

The motion in the video sequences brings the process noise. Thus, for any pixel ( , )x y  of 
the current noisy frame,  

    1( , ) ( , )k ISTQ x y d x y− = ,                                               (9) 
 

which keeps the covariance of motion region larger than that of the still region.  
The updating equations are defined as 
 

1( )T T
k k k k k k kKg p H H p H R− − −= +                                        (10) 

( )k k k k k kx x Kg z H x+ − −= + −                                             (11) 
( )k k k kp I Kg H p+ −= −                                                   (12) 

 

where kKg  is known as the blending factor for minimizing the posteriori error covariance, 

called the Kalman gain. Variables kx−  and kp−  are the priori estimates calculated in the 
prediction stage. Matrix kH  describes the relationship between the measurement vector, kz , 

and the posteriori state vector, kx+ . kR  is the covariance matrix of measurement noise, and 

kp+  is the posteriori estimate of state covariance matrix for the current state. 
In our proposed method, the current noisy and denoised frames are described as kz  and 

kx+ . kH  is the unit matrix. The measurement noise just represents the noise in the video 
sequences. Thus, the following equations can be obtained. 

 
1( )k k k kKg p p R− − −= +                                                (13) 

( )k k k k kx x Kg z x+ − −= + −                                               (14) 
( )k k kp I Kg p+ −= −                                                     (15) 

 
After Kalman filtering, a denoised frame can be obtained. In this frame, the still region is 

denoised well. However, the moving region still has much noise because the Kalman filter 
keeps the information of this region intact. Therefore, the noise in the moving region must still 
be reduced. Reducing the noise in the moving region of denoised frame from Kalman filtering 
is complicated. Thus, the Wiener filter [19] is applied on the entire current noisy frame. In this 
case, both the still and moving regions are denoised. Then, by weighting the two denoised 
frames using Kalman and Wiener filtering, an integrated denoised frame can be obtained. In 
the denoised frame, the still region is obtained by using Kalman filtering, and the moving 
region is obtained by using Wiener filtering. 
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2.3 Spatial-Temporal Weighting 
After Kalman and Wiener filtering, two denoised frames are obtained. The image from 
Kalman filtering showed the still regions are well denoised, but the motion regions retained 
the noisy information. The result of the Wiener filtering indicated that the motion regions were 
denoised to some extent. Thus, we integrated the two denoised frames by weighting them 
based on motion estimation results. The weight is based on Gaussian distribution, and, for any 
pixel，whose position is ( , )x y , its weight value, ( , )cw x y , can be calculated as follows. 

2
, ,
2

( )

( , )
IST x y

c

d

cw x y e σ
−

=                                                   (16) 
 

In the above equation, , ,IST x yd  is the corresponding motion estimation value in the position 

( , )x y , and cσ  is used to control the degree of attenuation. The larger the value of motion 
estimation is, the smaller the weight will be. Thus, the motion and still regions can be further 
distinguished effectively.  

The weighted denoised frame can be calculated as follows. 
 

 [ ]c c Kalman c WienerX W X I W X= + −                                       (17) 
 

Here, cW  represents the weight matrix calculated using Equation (16). KalmanX  and 

WienerX  represent the denoised frame matrices through Kalman filtering and Wiener filtering, 
respectively. cX  is simply the desired weighted frame matrix. After obtaining the weighted 
average, both the motion and still regions of the weighted frame have been denoised. 

 

2.4 Complexity Analysis 

We assume that the size of each frame (total pixel number) is N . The proposed method 
includes three steps: motion estimation, Kalman filtering and Wiener filtering. Firstly, in 
motion estimation, intensity based and structure tensor based motion estimation are 
implemented, respectively. In intensity based motion estimation, the size of Gaussian 
convolution kernel is assumed to be r r× . If we divide the convolution to the vertical and 
horizontal one, the time complexity will be ( )O Nr . However, in our method, the size of 
Gaussian convolution kernel is usually invariable, such as 5 5× , 10 10×  or 15 15× , and it will 
not increase along with the increase of frames’ size. So, the time complexity of Gaussian 
filtering will be ( )O N . After that, calculating the intensity distance is implemented, in which 
the time complexity is ( )O N . So, the total time complexity of intensity based motion 
estimation still is ( )O N . Then, in structure tensor based motion estimation, because the size of 
Gaussian convolution kernel and gradient convolution kernel are also not increase along with 
the increase of frames’ size, the time complexity of Gaussian filtering and gradient operator 
are ( )O N , respectively. Then, the time complexity of calculating the structure tensor distance 
is ( )O N . So, the total time complexity of structure tensor based motion estimation still is ( )O N . 
Therefore, the total time complexity of the motion estimation is ( )O N . After motion 
estimation, Kalman filtering and Wiener filtering are implemented respectively, in which the 
time complexity are both ( )O N . Finally, the time complexity of the proposed method is ( )O N , 
which is linear. 
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3. Denoising Validation Criteria 
To provide quantitative quality evaluations of the denoising results, we employed two 
objective criteria, namely, PSNR and SSIM [21-23]. PSNR is defined as 
 

  
2

1010 log ( )LPSNR
MSE

= ⋅ ,                                          (18) 

 
where L  is the dynamic range of the image (for 8 bits/pixel images, 255L = ). MSE is the 
mean squared error between the original and distorted images. SSIM is first calculated within 
local windows using 
 

1 2
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x y x y

C C
SSIM x y

C C
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+ +
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,                            (19) 

 
where x  and y  are the image patches extracted from the local window from the original and 
noisy images, respectively. xµ , 2

xσ , and xyσ  are the mean, variance, and cross-correlation 
computed within the local window, respectively. The overall SSIM score of a video frame is 
computed as the average local SSIM scores. PSNR is the mostly widely used quality measure 
in existing literature, but has been criticized for not correlating well with human visual 
perception [24]. SSIM is believed to be a better indicator for perceived image quality [24] as it 
also supplies a quality map that indicates the variations of images quality over space. The final 
PSNR and SSIM results for a denoised video sequence are computed as the frame average of 
the full sequence. 

 

4. Experiments and Results 
To evaluate the performance of the proposed method, we compared some state-of-the-art 
video denoising algorithms, such as ST-GSM [3] and VBM3D [4]. The original codes of these 
two algorithms can be downloaded online [25-26]. Besides, we also gave the experimental 
results of using Kalman filter and Wiener filter separately. 

The standard test videos can be downloaded at video sequence base [27]. Two types of 
videos are available in the base, namely, stationary and moving backgrounds. Given that our 
method is for videos with a stationary background, we chose four former types of videos in our 
experiment, which are Salesman, Paris, Akiyo, and Hall. The size of the video is 288×352, and 
the duration is 300 frames. The experiment was conducted on the luminance channel of the 
video. The noisy video sequences are simulated by adding independent white Gaussian noises 
at a given variance σ2 on each frame.  

Table 1 shows the PSNR and SSIM results of ST-GSM, VBM3D, Kalman-only, 
Wiener-only, and our proposed method for the four video sequences at five noise levels. As 
seen from the table, both Kalman-only and Wiener-only methods could not obtain good 
denoising results. When the noise level was relatively low, the proposed method worked well, 
but a gap still existed in ST-GSM and VBM3D. However, when the noise level was high, the 
proposed method performed better than ST-GSM and VBM3D for most test sequences. In 
particular, the SSIM of our proposed method was better than the other two algorithms. 
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Table 1. PSNR and SSIM Comparisons of Video Denoising Algorithms for Four Video Sequences 
at Five Noise Levels 

Video sequence 
Noise std (σ ) 

Salesman Paris 

10 15 20 50 100 10 15 20 50 100 

PSNR Results (dB) 

ST-GSM [3] 37.93 35.56 33.89 26.43 20.72 36.42 34.17 32.59 26.15 18.85 
VBM3D [4] 39.11 36.65 34.72 27.93 22.18 38.15 35.86 34.14 27.34 20.57 
Kalman-only 33.71 32.82 32.19 26.16 21.91 27.54 27.05 26.85 23.77 20.89 
Wiener-only 31.90 29.83 27.95 24.23 20.67 25.76 24.90 22.38 19.18 16.83 

Proposed method 35.33 33.62 33.27 29.28 22.48 30.57 28.04 28.01 25.06 21.44 
SSIM Results 

ST-GSM [3] 0.970 0.950 0.928 0.699 0.452 0.967 0.951 0.936 0.840 0.510 
VBM3D [4] 0.976 0.958 0.932 0.742 0.489 0.977 0.964 0.949 0.847 0.554 
Kalman-only 0.920 0.902 0.899 0.641 0.596 0.901 0.882 0.862 0.751 0.627 
Wiener-only 0.874 0.811 0.751 0.563 0.417 0.851 0.812 0.713 0.519 0.351 

Proposed method 0.936 0.921 0.914 0.857 0.738 0.943 0.913 0.909 0.838 0.731 

Video sequence 
Noise std (σ ) 

Akiyo Hall 

10 15 20 50 100 10 15 20 50 100 

PSNR Results (dB) 

ST-GSM [3] 40.67 38.34 36.53 28.44 21.89 38.28 35.99 34.12 27.16 19.99 
VBM3D [4] 42.00 39.72 37.85 30.69 23.36 39.96 37.93 36.31 28.14 21.97 
Kalman-only 33.60 32.26 30.85 28.48 22.76 32.69 31.99 31.34 26.83 22.52 
Wiener-only 33.71 31.11 29.40 24.60 20.85 30.68 29.03 26.36 21.77 18.62 

Proposed method 34.67 33.82 32.26 30.43 23.49 36.26 34.52 32.14 28.30 23.05 
SSIM Results 

ST-GSM [3] 0.980 0.969 0.958 0.852 0.673 0.975 0.965 0.955 0.882 0.620 
VBM3D [4] 0.984 0.976 0.964 0.871 0.614 0.980 0.973 0.966 0.887 0.601 
Kalman-only 0.948 0.931 0.907 0.790 0.576 0.954 0.941 0.914 0.795 0.612 
Wiener-only 0.901 0.825 0.828 0.633 0.477 0.893 0.831 0.806 0.622 0.453 

Proposed method 0.958 0.947 0.931 0.865 0.741 0.971 0.967 0.956 0.900 0.778 
 
Fig. 5 demonstrates the visual effects of above five video denoising algorithms. 

Specifically, Frame 100 was extracted from the Akiyo sequence together with a noisy version 
of the same frame. The denoised frames were obtained by using the five video denoising 
algorithms. The Kalman-only and our proposed method are obviously effective at suppressing 
background noise, but Kalman-only method is failed to remove the noise of motion region, 
such as the woman’s head in the frame, while our method could suppress the noise of motion 
region to some extent. This finding is further verified by examining the SSIM quality maps of 
the corresponding frames. The results show that our proposed method is effective for the large 
noisy video sequences and can achieve state-of-the-art denoising performance. 
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(a1)                                                  (a2)                                                    (a3) 

   
(a4)                                                    (a5)                                                      (a6) 

   
(a7)                                                   (b2)                                                     (b3) 

   
(b4)                                                    (b5)                                                    (b6) 

 
(b7) 

Fig. 5. Denoising results of frame 100 in the Akiyo sequence corrupted with noise with a standard deviation σ = 100. (a1) 
to (a7): Frames in the original, noisy, ST-GSM [3], VBM3D [4], Kalman-only, Wiener-only, and our proposed method 
denoised sequences. (b2) to (b7): Corresponding SSIM quality maps (brighter areas indicate larger SSIM values). 
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5. Conclusion 
This paper presented a video denoising method based on Kalman filter for large noisy video 
signals. This method was applied to the restoration of noisy video sequences with added white 
Gaussian noise. Motion estimation was performed by employing intensity and structure tensor 
comparing the current noisy frame with previous denoised frames. Then, the Kalman and the 
Wiener filters were applied on the current noisy frame. Finally, by weighting the denoised 
frames from the filtering methods, a satisfactory result was obtained. The experimental 
comparisons with state-of-the-art algorithms show that the proposed method achieved 
competitive results for large noisy video sequences with a fixed background in terms of both 
subjective and objective evaluations. 
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