개 복제 시 체내 성숙 난자 회수를 위한 화학발광효소면역분석기법의 적용

Application of Chemiluminescence Enzyme Immunoassay Method to Collect in vivo Matured Oocyte in Dog Cloning

  • 김민정 (서울대학교 수의학과 수의산과 및 생명공학) ;
  • 오현주 (서울대학교 수의학과 수의산과 및 생명공학) ;
  • 김건아 (서울대학교 수의학과 수의산과 및 생명공학) ;
  • 조영광 (서울대학교 수의학과 수의산과 및 생명공학) ;
  • 최진 (서울대학교 수의학과 수의산과 및 생명공학) ;
  • 이병천 (서울대학교 수의학과 수의산과 및 생명공학)
  • Kim, Min-Jung (College of Veterinary Medicine, Seoul National University) ;
  • Oh, Hyun-Ju (College of Veterinary Medicine, Seoul National University) ;
  • Kim, Geon-A (College of Veterinary Medicine, Seoul National University) ;
  • Jo, Young-Kwang (College of Veterinary Medicine, Seoul National University) ;
  • Choi, Jin (College of Veterinary Medicine, Seoul National University) ;
  • Lee, Byeong-Chun (College of Veterinary Medicine, Seoul National University)
  • 심사 : 2014.04.18
  • 발행 : 2014.08.31

초록

개 복제는 성숙된 중기의 난자를 수술적으로 회수하여 바로 사용해야 하기 때문에 다른 번식 보조술에 비하여 체내 난자 성숙의 정확한 예측이 특히 더 중요하다. 따라서 본 연구는 개에서 체내 성숙 난자 회수 시 방사면역분석기법(RIA)과 비교하여 화학발광효소면역분석기법(CLEIA)의 신뢰성을 평가하고, 참고값을 설정하기 위해 실시되었다. 배란일(Day 0) 결정을 위하여 발정전기와 발정기의 혈청 프로게스테론 농도가 RIA와 CLEIA 방법으로 분석되었다. Day 3에 수술적인 방법으로 체내 난자를 회수하였고, bisbenzimidazole로 핵을 염색한 뒤 성숙을 현미경으로 평가하였다. 평균 호르몬 농도는 CLEIA 값 ($7.64{\pm}0.06ng/ml$)이 RIA 값 ($6.46{\pm}0.04ng/ml$, P < 0.0001)보다 유의적으로 높았다. Day 0일 때 CLEIA 값 ($10.01{\pm}0.34ng/ml$)은 RIA 값 ($7.91{\pm}0.14ng/ml$)과 다르지 않았으나, Day -1과 Day 1일 때는 CLIEA ($6.41{\pm}0.15$ and $14.25{\pm}0.44ng/ml$)가 RIA($4.95{\pm}0.10$ and $11.29{\pm}0.34ng/ml$)보다 유의적으로 더 높은 값을 나타내었다. 그러나 두 가지 방법 모두 Day -1에서 Day 2까지 프로게스테론 농도가 유의적으로 점차 증가하였다. 그러므로 CLEIA 방법으로 난자 성숙을 결정하기 위해서는 더 넓은 범위와 높은 참고 값이 고려되어야만 한다.

Accurate determination of in vivo oocyte maturation is particularly critical for dog cloning compared to other assisted reproductive technologies because oocytes in metaphase II stage have to be recovered in order to undergo somatic cell nuclear transfer right after its recovery. The aim of present study was to evaluate the reliability and to set a reference range of a chemiluminescence enzyme immunoassay (CLEIA) compared to radioimmunoassay (RIA) method to retrieve in vivo matured oocytes. Serum progesterone concentration during proestrus and estrus was analyzed by RIA and CLEIA to determine ovulation day (Day 0). On Day 3, in vivo oocytes were recovered surgically and evaluated microscopically maturation status after staining nucleus with bisbenzimidazole dye. Mean progesterone concentration by CLEIA ($7.64{\pm}0.06ng/ml$) was significantly higher than by RIA ($6.46{\pm}0.04ng/ml$, P < 0.0001). It was not different between CLEIA ($10.01{\pm}0.34ng/ml$) and RIA values ($7.91{\pm}0.14ng/ml$, P < 0.05) on Day 0, but significantly higher CLEIA level on Day -1 and Day 1 ($6.41{\pm}0.15$ and $14.25{\pm}0.44ng/ml$) was assessed compared to RIA ($4.95{\pm}0.10$ and $11.29{\pm}0.34ng/ml$). However, with both methods, progesterone level was significantly increased from Day -1 to Day 2. To determine oocyte maturation with CLEIA method, a wider and higher reference range has to be considered.

키워드

참고문헌

  1. Chapwanya A, Clegg T, Stanley P, Vaughan L. Comparison of the Immulite and RIA assay methods for measuring peripheral blood progesterone levels in Greyhound bitches. Theriogenology 2008; 70: 795-799. https://doi.org/10.1016/j.theriogenology.2008.05.047
  2. Chastant-Maillard S, de Lesegno CV, Chebrout M, Thoumire S, Meylheuc T, Fontbonne A, Chodkiewicz M, Saint-Dizier M, Reynaud K. The canine oocyte: uncommon features of in vivo and in vitro maturation. Reprod Fert Develop 2011; 23: 391-402. https://doi.org/10.1071/RD10064
  3. Farstad W. Current state in biotechnology in canine and feline reproduction. Anim Reprod Sci 2000; 60: 375-387.
  4. Jang G, Hong S, Oh H, Kim M, Park J, Kim H, Kim DY, Lee BC. A cloned toy poodle produced from somatic cells derived from an aged female dog. Theriogenology 2008; 69: 556-563. https://doi.org/10.1016/j.theriogenology.2007.11.002
  5. Jang G, Kim M, Oh H, Hossein M, Fibrianto Y, Hong S, Park J, Kim J, Kim H, Kang S. Birth of viable female dogs produced by somatic cell nuclear transfer. Theriogenology 2007; 67: 941-947. https://doi.org/10.1016/j.theriogenology.2006.11.006
  6. Jang G, Kim MK, Lee BC. Current status and applications of somatic cell nuclear transfer in dogs. Theriogenology 2010; 74: 1311-1320. https://doi.org/10.1016/j.theriogenology.2010.05.036
  7. Johnston SD, Margaret V, Kustritz R, Olson PNS. Breeding management and artificial insemination of the bitch. In: Canine and feline theriogenology. 1st ed. Philadelphia: WB Saunders. 2001: 48-49.
  8. Kim GA, Oh HJ, Park JE, Kim MJ, Park EJ, Jo YK, Jang G, Kim MK, Kim HJ, Lee BC. Species-specific challenges in dog cloning. Reproduction in domestic animals = Zuchthygiene 2012; 47 Suppl 6: 80-83.
  9. Kim MJ, Oh HJ, Park JE, Hong SG, Kang JT, Koo OJ, Kang SK, Jang G, Lee BC. Influence of oocyte donor and embryo recipient conditions on cloning efficiency in dogs. Theriogenology 2010; 74: 473-478. https://doi.org/10.1016/j.theriogenology.2010.03.001
  10. Kim MJ, Oh HJ, Park JE, Kim GA, Park EJ, Jo YK, Lee BC. Duration of gestation in pregnant dogs carrying cloned fetuses. Theriogenology 2013; 79: 257-260. https://doi.org/10.1016/j.theriogenology.2012.08.011
  11. Kim MK, Jang G, Oh HJ, Yuda F, Kim HJ, Hwang WS, Hossein MS, Kim JJ, Shin NS, Kang SK, Lee BC. Endangered wolves cloned from adult somatic cells. Cloning Stem Cells 2007; 9: 130-137. https://doi.org/10.1089/clo.2006.0034
  12. Lamb GC, Brown DR, Larson JE, Dahlen CR, DiLorenzo N, Arthington JD, DiCostanzo A. Effect of organic or inorganic trace mineral supplementation on follicular response, ovulation, and embryo production in superovulated Angus heifers. Anim Reprod Sci 2008; 106: 221-231. https://doi.org/10.1016/j.anireprosci.2007.04.007
  13. Lee BC, Kim MK, Jang G, Oh HJ, Yuda F, Kim HJ, Shamim MH, Kim JJ, Kang SK, Schatten G, Hwang WS. Dogs cloned from adult somatic cells. Nature 2005; 436: 641. https://doi.org/10.1038/436641a
  14. Mailer JL. Mitotic control. Curr Opin Cell Biol 1991; 3: 269-275. https://doi.org/10.1016/0955-0674(91)90151-N
  15. Manothaiudom K, Johnston SD, Hegstad RL, Hardy SK. Evaluation of the ICAGEN-Target canine ovulation timing diagnostic test in detecting canine plasma progesterone concentrations. J Am Anim Hosp Assoc 1995; 31: 57-64. https://doi.org/10.5326/15473317-31-1-57
  16. Masui Y, Markert CL. Cytoplasmic control of nuclear behavior during meiotic maturation of frog oocytes. J Exp Zool A Comp Exp Biol 1971; 177: 129-145. https://doi.org/10.1002/jez.1401770202
  17. Nurse P. Universal control mechanism regulating onset of M-phase. Nature 1990; 344: 503-508. https://doi.org/10.1038/344503a0
  18. Oh H, Kim M, Jang G, Kim H, Hong S, Park J, Park K, Park C, Sohn S, Kim D, Shin N, Lee B. Cloning endangered gray wolves (Canis lupus) from somatic cells collected postmortem. Theriogenology 2008; 70: 638-47. https://doi.org/10.1016/j.theriogenology.2008.04.032
  19. Reynaud K, Fontbonne A, Marseloo N, Thoumire S, Chebrout M, de Lesegno CV, Chastant-Maillard S. In vivo meiotic resumption, fertilization and early embryonic development in the bitch. Reproduction 2005; 130: 193-201. https://doi.org/10.1530/rep.1.00500
  20. Romaguera R, Casanovas A, Morato R, Izquierdo D, Catala M, Jimenez-Macedo A, Mogas T, Paramio M. Effect of follicle diameter on oocyte apoptosis, embryo development and chromosomal ploidy in prepubertal goats. Theriogenology 2010; 74: 364-373. https://doi.org/10.1016/j.theriogenology.2010.02.019
  21. Shirazi A, Shams-Esfandabadi N, Hosseini S. A comparison of two recovery methods of ovine oocytes for in vitro maturation. Small Ruminant Res 2005; 58: 283-286. https://doi.org/10.1016/j.smallrumres.2004.11.002
  22. Songsasen N, Wildt DE. Size of the donor follicle, but not stage of reproductive cycle or seasonality, influences meiotic competency of selected domestic dog oocytes. Mol Reprod Dev 2005; 72: 113-119. https://doi.org/10.1002/mrd.20330
  23. Thomassen R, Sanson G, Krogenaes A, Fougner J, Berg KA, Farstad W. Artificial insemination with frozen semen in dogs: a retrospective study of 10 years using a non-surgical approach. Theriogenology 2006; 66: 1645-1650. https://doi.org/10.1016/j.theriogenology.2006.01.022