DOI QR코드

DOI QR Code

Diversity of Bacteriophages Infecting Xanthomonas oryzae pv. oryzae in Paddy Fields and Its Potential to Control Bacterial Leaf Blight of Rice

  • Chae, Jong-Chan (Division of Biotechnology, Chonbuk National University) ;
  • Nguyen, Bao Hung (Division of Biotechnology, Chonbuk National University) ;
  • Yu, Sang-Mi (Division of Biotechnology, Chonbuk National University) ;
  • Lee, Ha Kyung (Division of Biotechnology, Chonbuk National University) ;
  • Lee, Yong Hoon (Division of Biotechnology, Chonbuk National University)
  • Received : 2014.02.10
  • Accepted : 2014.03.14
  • Published : 2014.06.28

Abstract

Bacterial leaf blight (BLB) caused by Xanthomonas oryzae pv. oryzae (Xoo) is a very serious disease in rice-growing regions of the world. In spite of their economic importance, there are no effective ways of protecting rice plants from this disease. Bacteriophages infecting Xoo affect the population dynamics of the pathogen and consequently the occurrence of the disease. In this study, we investigated the diversity, host range, and infectivity of Xoo phages, and their use as a bicontrol agent on BLB was tested. Among the 34 phages that were isolated from floodwater in paddy fields, 29 belonged to the Myoviridae family, which suggests that the dominant phage in the ecosystem was Myoviridae. The isolated phages were classified into two groups based on plaque size produced on the lawn of Xoo. In general, there was a negative relationship between plaque size and host range, and interestingly the phages having a narrow host range had low efficiency of infectivity. The deduced protein sequence analysis of htf genes indicated that the gene was not a determinant of host specificity. Although the difference in host range and infectivity depending on morphotype needs to be addressed, the results revealed deeper understanding of the interaction between the phages and Xoo strains in floodwater and damp soil environments. The phage mixtures reduced the occurrence of BLB when they were treated with skim milk. The results indicate that the Xoo phages could be used as an alternative control method to increase the control efficacy and reduce the use of agrochemicals.

Keywords

References

  1. Ackermann HW. 1996. Frequency of morphological phage descriptions in 1995. Arch. Virol. 141: 209-218. https://doi.org/10.1007/BF01718394
  2. Ackermann HW. 1999. Tailed bacteriophages. The order Caudovirales. Adv. Virus Res. 51: 135-201.
  3. Ackermann HW. 2001. Frequency of morphological phage descriptions in the year 2000. Arch. Virol. 146: 843-857. https://doi.org/10.1007/s007050170120
  4. Bigby D, Kropinski AMB. 1989. Isolation and characterization of a Pseudomonas aeruginosa bacteriophage with a very limited host range. Can. J. Microbiol. 35: 630-635. https://doi.org/10.1139/m89-101
  5. Breitbart M, Salamon P, Andresen B, Mahaffy JM, Segall AM, Mead D, et al. 2002. Genomic analysis of uncultured marine viral communities. Proc. Natl. Acad. Sci. USA 99: 14250-14255. https://doi.org/10.1073/pnas.202488399
  6. Brussow H, Hendrix RW. 2002. Phage genomics: small is beautiful. Cell 108: 13-16. https://doi.org/10.1016/S0092-8674(01)00637-7
  7. Civerolo EL, Keil HL. 1969. Inhibition of bacterial spot of peach foliage by Xanthomonas pruni bacteriophage. Phytopathology 59: 1966-1967.
  8. Deveau H, Van Calsteren MR, Moineaul S. 2002. Effect of exopolysaccharides on phage-host interactions in Lactococcus lactis. Appl. Environ. Microbiol. 68: 4364-4369. https://doi.org/10.1128/AEM.68.9.4364-4369.2002
  9. Flaherty JE, Harbaugh BK, Jones JB, Somodi GC. 2001. Hmutant bacteriophages as a potential biocontrol of bacterial blight of Geranium. HortScience 36: 98-100.
  10. Gill JJ, Svircev AM, Smith R, Castle AJ. 2003. Bacteriophages of Erwinia amylovora. Appl. Environ. Microbiol. 69: 2133-2138. https://doi.org/10.1128/AEM.69.4.2133-2138.2003
  11. Goodridge LD. 2004. Bacteriophage biocontrol of plant pathogens: fact or fiction? Trends Biotechnol. 22: 384-385. https://doi.org/10.1016/j.tibtech.2004.05.007
  12. Inoue Y, Matsuura T, Ohara T, Azegami K. 2006. Sequence analysis of the genome of OP2, a lytic bacteriophage of Xanthomonas oryzae pv. oryzae. J. Gen. Plant Pathol. 172: 104-110.
  13. Inoue Y, Matsuura T, Ohara T, Azegami K. 2006. Bacteriophage OP1, lytic for Xanthomonas oryzae pv. oryzae, changes its host range by duplication and deletion of the small domain in the deduced tail fiber gene. J. Gen. Plant Pathol. 172: 111-118.
  14. Jackson LE. 1989. Bacteriophage prevention and control of harmful plant bacteria. US Patent No. 4,828,999.
  15. Jones JB, Jackson LE, Balogh B, Obradovic A, Iriarte FB, Momol MT. 2007. Bacteriophages for plant disease control. Annu. Rev. Phytopathol. 45: 245-262. https://doi.org/10.1146/annurev.phyto.45.062806.094411
  16. Kimura M, Jia ZJ, Nakayama N, Asakawa S. 2008. Ecology of viruses in soils: past, present and future perspectives. Soil Sci. Plant Nutr. 54: 1-32. https://doi.org/10.1111/j.1747-0765.2007.00197.x
  17. Kuo T-T, Cheng L-C, Yang C-M, Yang S-E. 1971. Bacterial leaf blight of rice plant IV. Effect of bacteriophage on the infectivity of Xanthomonas oryzae. Bot. Bull. Acad. Sinica 12: 1-9.
  18. Kuo T-T, Huang T-C, Wu R-Y, Chen C-P. 1968. Phage Xp12 of Xanthomonas oryzae (Uyeda et Ishiyama) Dowson. Can. J. Microbiol. 14: 1139-1142. https://doi.org/10.1139/m68-190
  19. Kuo T-T, Huang T-C, Chow T-Y. 1969. A filamentous bacteriophage from Xanthomonas oryzae. Virology 39: 548-555. https://doi.org/10.1016/0042-6822(69)90102-0
  20. Kuo T-T, Huang T-C, Wu R-Y, Yang C-M. 1967. Characterization of three bacteriophages of Xanthomonas oryzae (Uyeda et Ishiyama) Dowson. Bot. Bull. Acad. Sinica 8: 246-254.
  21. Lee C-N, Hu R-M, Chow T-Y, Lin J-W, Cheb H-Y, Tseng YH, Weng S-F. 2007. Comparison of genomes of three Xanthomonas oryzae bacteriophages. BMC Genomics 8: 442-453. https://doi.org/10.1186/1471-2164-8-442
  22. Lin N, You BY, Huang CY, Kuo CW, Wen FS, Yang JS, Tseng YH. 1994. Characterization of two novel filamentous phages of Xanthomonas. J. Gen. Virol. 75: 2543-2547. https://doi.org/10.1099/0022-1317-75-9-2543
  23. Maniloff J, Ackermann HW. 1998. Taxonomy of bacterial viruses, establishment of tailed virus genera and the other Caudovirales. Arch. Virol. 143: 2051-2063. https://doi.org/10.1007/s007050050442
  24. Obradovic A, Jones JB, Momol MT, Olson SM, Jackson LE, Balogh B, et al. 2005. Integration of biological control agents and systemic acquired resistance inducers against bacterial spot on tomato. Plant Dis. 89: 712-716. https://doi.org/10.1094/PD-89-0712
  25. Okabe N, Goto M. 1963. Bacteriophages of plant pathogens. Annu. Rev. Phytopathol. 1: 397-418. https://doi.org/10.1146/annurev.py.01.090163.002145
  26. Park S C, S himamura I, Fukunaga M , Mori K I, N akai T . 2000. Isolation of bacteriophages specific to a fish pathogen, Pseudomonas plecoglossicida, as a candidate for disease control. Appl. Environ. Microbiol. 66: 1416-1422. https://doi.org/10.1128/AEM.66.4.1416-1422.2000
  27. Shin MS, Noh TH, Kim KK, Shin SH, Ko KJ, Lee JK. 2005. Reaction of Korean rice varieties to new bacterial blight race, K3a. Korean J. Crop Sci. 50: 151-155.
  28. Sinha RP. 1980. Alteration of host specificity to lytic bacteriophages in Streptococcus cremoris. Appl. Environ. Microbiol. 40: 326-332.
  29. Tamura K, Peterson D, Peterson N, Stecher G, Nei M, Kumar S. 2011. MEGA5: molecular evolutionary genetics analysis using maximum likelihood, evolutionary distance, and maximum parsimony methods. Mol. Biol. Evol. 28: 2731- 2739. https://doi.org/10.1093/molbev/msr121
  30. Thomas RC. 1935. A bacteriophage in relation to Stewart's disease of corn. Phytopathology 25: 371-372.
  31. Vidaver AK. 1976. Prospects for control of phytopathogenic bacteria by bacteriophages and bacteriocins. Annu. Rev. Phytopathol. 14: 451-465. https://doi.org/10.1146/annurev.py.14.090176.002315
  32. Wakimoto SS. 1960. Classification of strains of Xanthomonas oryzae on the basis of their susceptibility against bacteriophages. Ann. Phytopathol. Soc. Jpn. 25: 193-198. https://doi.org/10.3186/jjphytopath.25.193
  33. Wolf A, Wiese J, Jost G, Witzel KP. 2003. Wide distribution of bacteriophages that lyse the same indigenous freshwater isolate (Sphingomonas sp. strain B18). Appl. Environ. Microbiol. 69: 2395-2398. https://doi.org/10.1128/AEM.69.4.2395-2398.2003
  34. Yuzenkova J, Nechaev S, Berlin J, Rogulja D, Kuznedelov K, Inman R, et al. 2003. Genome of Xanthomonas oryzae bacteriophage Xp10: an odd T-odd phage. J. Mol. Biol. 330: 735-748. https://doi.org/10.1016/S0022-2836(03)00634-X

Cited by

  1. Controlling the Microbiome: Microhabitat Adjustments for Successful Biocontrol Strategies in Soil and Human Gut vol.7, pp.None, 2016, https://doi.org/10.3389/fmicb.2016.01079
  2. Methylome Analysis of Two Xanthomonas spp. Using Single-Molecule Real-Time Sequencing vol.32, pp.6, 2016, https://doi.org/10.5423/ppj.ft.10.2016.0216
  3. Isolation and characterization of a novel phage Xoo-sp2 that infects Xanthomonas oryzae pv. oryzae vol.99, pp.10, 2018, https://doi.org/10.1099/jgv.0.001133
  4. Identification and characterization of five new OP2-related Myoviridae bacteriophages infecting different strains of Xanthomonas oryzae pv. oryzae vol.101, pp.2, 2014, https://doi.org/10.1007/s42161-018-0188-6
  5. Complete Genome Sequences of 10 Xanthomonas oryzae pv. oryzae Bacteriophages vol.8, pp.27, 2014, https://doi.org/10.1128/mra.00334-19
  6. Bacteriophage Usage for Bacterial Disease Management and Diagnosis in Plants vol.36, pp.3, 2014, https://doi.org/10.5423/ppj.rw.04.2020.0074
  7. Phage Biocontrol of Bacterial Leaf Blight Disease on Welsh Onion Caused by Xanthomonas axonopodis pv. allii vol.10, pp.5, 2021, https://doi.org/10.3390/antibiotics10050517
  8. Bacteriophage-Mediated Control of Phytopathogenic Xanthomonads: A Promising Green Solution for the Future vol.9, pp.5, 2014, https://doi.org/10.3390/microorganisms9051056
  9. Isolation and Characterization of Novel Phages Targeting Xanthomonas oryzae: Culprit of Bacterial Leaf Blight Disease in Rice vol.2, pp.3, 2014, https://doi.org/10.1089/phage.2021.0009
  10. Isolation and Characterization of Bacteriophages Infecting Burkholderia glumae, the Major Causal Agent of Bacterial Panicle Blight in Rice vol.105, pp.9, 2014, https://doi.org/10.1094/pdis-08-20-1711-re