References
- Ahn JW, Kim YG, Kim KJ. 2010. Crystal structure of nonredox regulated SSADH from Escherichia coli. Biochem. Biophys. Res. Commun. 392: 106-111. https://doi.org/10.1016/j.bbrc.2010.01.014
- Arnold K, Bordoli L, Kopp J, Schwede T. 2006. The SWISSMODEL workspace: a web-based environment for protein structure homology modelling. Bioinformatics 22: 195-201. https://doi.org/10.1093/bioinformatics/bti770
- Aronson JN, Borris DP, Doerner JF, Akers E. 1975. Gammaaminobutyric acid pathway and modified tricarboxylic acid cycle activity during growth and sporulation of Bacillus thuringiensis. Appl. Microbiol. 30: 489-492.
- Benkert P, Biasini M, Schwede T. 2011. Toward the estimation of the absolute quality of individual protein structure models. Bioinformatics 27: 343-350. https://doi.org/10.1093/bioinformatics/btq662
-
Bown AW, Shelp BJ. 1997. The metabolism and functions of
$\gamma$ -aminobutyric acid. Plant Physiol. 115: 1-5. https://doi.org/10.1104/pp.115.1.1 - Burton RL, Chen S, Xu XL, Grant GA. 2007. A novel mechanism for substrate inhibition in Mycobacterium tuberculosis D-3-phosphoglycerate dehydrogenase. J. Biol. Chem. 282: 31517- 31524. https://doi.org/10.1074/jbc.M704032200
- Chambliss KL, Caudle DL, Hinson DD, Moomaw CR, Slaughter CA, Jakobs C, Gibson KM. 1995. Molecular cloning of the mature NAD(+)-dependent succinic semialdehyde dehydrogenase from rat and human. cDNA isolation, evolutionary homology, and tissue expression. J. Biol. Chem. 270: 461-467. https://doi.org/10.1074/jbc.270.1.461
- Cleland WW. 1963. Computer programmes for processing enzyme kinetic data. Nature 198: 463-465. https://doi.org/10.1038/198463a0
- Fait A, Fromm H, Walter D, Galili G, Fernie AR. 2008. Highway or byway: the metabolic role of the GABA shunt in plants. Trends Plant Sci. 13: 14-19.
-
Fuhrer T, Chen L, Sauer U, Vitkup D. 2007. Computational prediction and experimental verification of the gene encoding the
$NAD^+$ /$NADP^+$ -dependent succinate semialdehyde dehydrogenase in Escherichia coli. J. Bacteriol. 189: 8073-8078. https://doi.org/10.1128/JB.01027-07 - Gouet P, Robert X, Courcelle E. 2003. ESPript/ENDscript: extracting and rendering sequence and 3D information from atomic structures of proteins. Nucleic Acids Res. 31: 3320- 3323. https://doi.org/10.1093/nar/gkg556
- Jakoby WB, Scott EM. 1959. Aldehyde oxidation. III. Succinic semialdehyde dehydrogenase. J. Biol. Chem. 234: 937-940.
- Kriegstein AR. 2005. GABA puts the brake on stem cells. Nat. Neurosci. 8: 1132-1133. https://doi.org/10.1038/nn0905-1132
-
Langendorf CG, Key TL, Fenalti G, Kan WT, Buckle AM, Caradoc-Davies T, et al. 2010. The X-ray crystal structure of Escherichia coli succinic semialdehyde dehydrogenase; structural insights into
$NADP^+$ /enzyme interactions. PLoS One 5: e9280. https://doi.org/10.1371/journal.pone.0009280 - Lineweaver H, Burk D. 1934. The determination of enzyme dissociation constants. J. Am. Chem. Soc. 56: 658-666. https://doi.org/10.1021/ja01318a036
- Skinner MA, Cooper RA. 1982. An Escherichia coli mutant defective in the NAD-dependent succinate semialdehyde dehydrogenase. Arch. Microbiol. 132: 270-275. https://doi.org/10.1007/BF00407964
- Tenover FC. 2006. Mechanisms of antimicrobial resistance in bacteria. Am. J. Med. 119: S3-S10.
- Wang J, Araki T, Ogawa T, Matsuoka M, Fukuda H. 1999. A method of graphically analyzing substrate-inhibition kinetics. Biotechnol. Bioeng. 62: 402-411. https://doi.org/10.1002/(SICI)1097-0290(19990220)62:4<402::AID-BIT3>3.0.CO;2-V
- Wright SK, Viola RE. 1998. Evaluation of methods for the quantitation of cysteines in proteins. Anal. Biochem. 265: 8-14.
- Yuan Z, Yin B, Wei D, Yuan YR. 2013. Structural basis for cofactor and substrate selection by cyanobacterium succinic semialdehyde dehydrogenase. J. Struct. Biol. 182: 125-135. https://doi.org/10.1016/j.jsb.2013.03.001
-
Zheng H, Beliavsky A, Tchigvintsev A, Brunzelle JS, Brown G, Flick R, et al. 2013. Structure and activity of the
$NAD(P)^+$ - dependent succinate semialdehyde dehydrogenase YneI from Salmonella typhimurium. Proteins 81: 1031-1041. https://doi.org/10.1002/prot.24227
Cited by
- Kinetic and Structural Characterization for Cofactor Preference of Succinic Semialdehyde Dehydrogenase from Streptococcus pyogenes vol.37, pp.10, 2014, https://doi.org/10.14348/molcells.2014.0162
- Identification of suitable reference genes during the formation of chlamydospores in Clonostachys rosea 67‐1 vol.6, pp.5, 2014, https://doi.org/10.1002/mbo3.505
- Selective determination of the catalytic cysteine pKa of two‐cysteine succinic semialdehyde dehydrogenase from Acinetobacter baumannii using burst kinetics and enzyme adduct formation vol.285, pp.13, 2014, https://doi.org/10.1111/febs.14497
- Kinetic and structural insights into enzymatic mechanism of succinic semialdehyde dehydrogenase from Cyanothece sp. ATCC51142 vol.15, pp.9, 2020, https://doi.org/10.1371/journal.pone.0239372