DOI QR코드

DOI QR Code

An Enantioselective Amidase from Burkholderia multivorans for the Stereoselective Synthesis of Esfenvalerate

  • Lee, Sang-Hyun (Department of Biotechnology, Korea University Graduate School) ;
  • Park, Oh-Jin (Department of Biological and Chemical Engineering, Yanbian University of Science and Technology) ;
  • Shin, Hyun-Jae (Department of Chemical and Biochemical Engineering, Chosun University)
  • Received : 2014.01.10
  • Accepted : 2014.04.11
  • Published : 2014.07.28

Abstract

Using racemic (R,S)-2-(4-chlorophenyl)-3-methylbutyramide, an intermediate for the chiral pyrethroid insecticide Esfenvalerate, as a sole nitrogen source in a minimal medium, several strains with high enatioselectivity (${\geq}98%$) were isolated by enrichment techniques. One of the strains, LG 31-3, was identified as Burkholderia multivorans, based on physiological and morphological tests by a standardized Biolog station for carbon source utilization. A novel amidase was purified from B. mutivorans LG 31-3 and characterized. The enzyme exhibited (S)-selective amidase activity on racemic (R,S)-2-(4-chlorophenyl)-3-methylbutyramide. Addition of the racemic amide induced the production of the enantioselective amidase. The molecular mass of the amidase on SDS-PAGE analysis was shown to be 50 kDa. The purified amidase was subjected to proteolytic digestion with a modified trypsin. The N-terminal and internal amino acid sequences of the purified amidase showed a high sequence homology with those deduced from a gene named YP_366732.1 encoding indole acetimide hydrolase from Burkholderia sp. 383.

Keywords

References

  1. Altschul SF, Gish W, Miller W, Myers EW, Lipman DJ. 1990. Basic local alignment search tool. J. Mol. Biol. 215: 403-410. https://doi.org/10.1016/S0022-2836(05)80360-2
  2. Asano Y, Yasuda T, Tani Y, Yamada H. 1982. A new enzymatic method of acrylamide production. Agric. Biol. Chem. 46: 1183-1189. https://doi.org/10.1271/bbb1961.46.1183
  3. Behrens GA, Hummel A, Padhi SK, Schätzle S, Bornscheuer UT. 2011. Discovery and protein engineering of biocatalysts for organic synthesis. Adv. Synth. Catal. 353: 2191-2215. https://doi.org/10.1002/adsc.201100446
  4. Bornscheuer UT, Kazlauskas RJ. 1999. Hydrolases in Organic Synthesis: Regio- and Stereoselective Biotransformations. Wiley- VCH, Weinheim, Germany.
  5. Chikusa Y, Hirayama Y, Ikunaka M, Inoue T, Kamiyama S, Moriwaki M, et al. 2003. There's no industrial biocatalyst like hydrolase: development of scalable enantioselective processes using hydrolytic enzymes. Org. Proc. Res. Dev. 7: 289-296. https://doi.org/10.1021/op034014b
  6. Ciskanik LM, Wilczek JM, Fallon RD. 1995. Purification and characterization of an enantioselective amidase from Pseudomonas chlororaphis B23. Appl. Environ. Microbiol. 61: 998-1003.
  7. Fallon RD, Stieglitz B, Turner Jr I. 1997. A Pseudomonas putida capable of stereoselective hydrolysis of nitriles. Appl. Microbiol. Biotechnol. 47: 156-161. https://doi.org/10.1007/s002530050905
  8. He YC, Ma CL, Xu JH, Zhou L. 2011. A high-throughput screening strategy for nitrile-hydrolyzing enzymes based on ferric hydroxamate spectrophotometry. Appl. Microbiol. Biotechnol. 89: 817-823. https://doi.org/10.1007/s00253-010-2977-5
  9. Jin JZ, Chang DL, Zhang J. 2011. Discovery and application of n ew b acterial s trains f or a symmetric synthesis of L-tertbutyl leucine in high enantioselectivity. Appl. Biochem. Biotechnol. 64: 376-385.
  10. Ju X, Yu HL, Pan J, Wei DZ, Xu JH. 2010. Bioproduction of chiral mandelate by enantioselective deacylation of ${alpha}$- acetoxyphenylacetic acid using whole cells of newly isolated Pseudomonas sp. ECU1011. Appl. Microbiol. Biotechnol. 86: 83-91. https://doi.org/10.1007/s00253-009-2286-z
  11. Komeda H, Harada H, Washika S, Sakamoto T, Ueda M, Asano Y. 2004. S-Stereoselective piperazine-2-tert-butylcarboxamide hydrolase from Pseudomonas azotoformans IAM 1603 is a novel L-amino acid amidase. Eur. J. Biochem. 271: 1465-1475. https://doi.org/10.1111/j.1432-1033.2004.04056.x
  12. Laemmli UK. 1970. Cleavage of structural proteins during the assembly of the head of bacterial phage T4. Nature 227: 680-685. https://doi.org/10.1038/227680a0
  13. Larkin MA, Blackshields G, Brown NP, Chenna R, McGettigan PA, McWilliam H, et al. 2007. Clustal W and Clustal X version 2.0. Bioinformatics 23: 2947-2948. https://doi.org/10.1093/bioinformatics/btm404
  14. Lin ZJ, Zheng RC, Lei LH, Zheng YG, Shen YC. 2011. Ferrous and ferric ions-based high-throughput screening strategy for nitrile hydratase and amidase. J. Microbiol. Methods 85: 214-220. https://doi.org/10.1016/j.mimet.2011.03.005
  15. Martínková L, Vejvoda V, Kren V. 2008. Selection and screening for enzymes of nitrile metabolism. J. Biotechnol. 133: 318-326. https://doi.org/10.1016/j.jbiotec.2007.10.011
  16. Matsumoto SI, Inoue A, Kumagai K, Murai R, Mitsuda S. 1995. Enantioselective hydrolysis of (RS)-2-isoproyl-4'- chorophenylacetonitrile by Pseudomonas sp. B21C9. Biosci. Biotechnol. Biochem. 59: 720-722. https://doi.org/10.1271/bbb.59.720
  17. Nishiyama M, Horinouchi S, Kobayashi M, Nagasawa T, Yamada H, Beppu T. 1991. Cloning and characterization of genes responsible for metabolism of nitrile compounds from Pseudomonas chlororaphis B23. J. Bacteriol. 173: 2465-2472. https://doi.org/10.1128/jb.173.8.2465-2472.1991
  18. Park OJ, Lee SH, Park TY, Chung WG, Lee SW. 2006. Development of a scalable process for a key intermediate of (R)-metalaxyl by enzymatic kinetic resolution. Org. Proc. Res. Dev. 10: 588-591. https://doi.org/10.1021/op050166q
  19. Rehdorf J, Behrens GA, Nguyen S-G, Kourist R, Borscheuer UT. 2012. Pseudomonas putida esterase contains a GGG(A)Xmotif conferring activity for the kinetic resolution of tertiary alcohols. Appl. Microbiol. Biotechnol. 93: 1119-1126. https://doi.org/10.1007/s00253-011-3464-3
  20. Sambrook JF, Russell DW. 2001. Molecular Cloning: A Laboratory Manual, 3rd Ed. Cold Spring Harbor Laboratory Press, Cold Spring Harbor, NY, USA.
  21. Sonke T, Kaptein B. 2012. Hydrolysis of amides. In Drauz K, Groger H, May O (eds.). Enzyme Catalysis in Organic Synthesis, 3rd Ed. Wiley-VCH, Weinheim, Germany.
  22. Xue YP, Xu SZ, Liu ZQ, Zheng YG, Shen YC. 2011. Enantioselective biocatalytic hydrolysis of (R,S)-mandelonitrile for production of (R)-(2)-mandelic acid by a newly isolated mutant strain. J. Ind. Microbiol. Biotechnol. 38: 337-345. https://doi.org/10.1007/s10295-010-0778-6
  23. Zheng RC, Wang YS, Liu ZQ, Xing LY, Zheng YG, Shen YC. 2007. Isolation and characterization of Delftia tsuruhatensis ZJB-05174, capable of R-enantioselective degradation of 2,2- dimethylcyclopropanecarboxamide. Res. Microbiol. 158: 258-264. https://doi.org/10.1016/j.resmic.2006.12.007
  24. Zhu Q, Fan A, Wang YS, Zhu XQ, Wang Z, Wu MH, Zheng YG. 2007. Novel sensitive high-throughput screening strategy for nitrilase-producing strains. Appl. Environ. Microbiol. 73: 6053-6057. https://doi.org/10.1128/AEM.01089-07
  25. Zimmer C, Platz T, Cadez N, Giffhorn F, Kohring GW. 2006. A cold active (2R,3R)-(-)-di-O-benzoyl-tartrate hydrolyzing esterase from Rhodotorula mucilaginosa. Appl. Microbiol. Biotechnol. 73: 132-140. https://doi.org/10.1007/s00253-006-0463-x