DOI QR코드

DOI QR Code

Interleukin-$32{\gamma}$ Transgenic Mice Resist LPS-Mediated Septic Shock

  • Kim, Sun Jong (Division of Respiratory and Critical Care Medicine, Department of Internal Medicine, Kunkuk University Hospital) ;
  • Lee, Siyoung (Laboratory of Cytokine Immunology, Department of Biomedical Science and Technology, Konkuk University) ;
  • Kwak, Areum (Laboratory of Cytokine Immunology, Department of Biomedical Science and Technology, Konkuk University) ;
  • Kim, Eunsom (Laboratory of Cytokine Immunology, Department of Biomedical Science and Technology, Konkuk University) ;
  • Jo, Seunghyun (Laboratory of Cytokine Immunology, Department of Biomedical Science and Technology, Konkuk University) ;
  • Bae, Suyoung (Department of Bioequivalence Division for Drug Evaluation, Ministry of Food and Drug Safety) ;
  • Lee, Youngmin (Department of Medicine, Pusan Paik Hospital, College of Medicine, Inje University) ;
  • Ryoo, Soyoon (Laboratory of Cytokine Immunology, Department of Biomedical Science and Technology, Konkuk University) ;
  • Choi, Jida (Laboratory of Cytokine Immunology, Department of Biomedical Science and Technology, Konkuk University) ;
  • Kim, Soohyun (Laboratory of Cytokine Immunology, Department of Biomedical Science and Technology, Konkuk University)
  • Received : 2014.04.10
  • Accepted : 2014.04.18
  • Published : 2014.08.28

Abstract

Interleukin-32 (IL-32) is a cytokine and inducer of various proinflammatory cytokines such as $TNF{\alpha}$, IL-$1{\beta}$, and IL-6 as well as chemokines. There are five splicing variants (${\alpha}$, ${\beta}$, ${\gamma}$, ${\delta}$, and ${\varepsilon}$) and IL-$32{\gamma}$ is the most active isoform. We generated human IL-$32{\gamma}$ transgenic (IL-$32{\gamma}$ TG) mice to express high level of IL-$32{\gamma}$ in various tissues, including immune cells. The pathology of sepsis is based on the systemic inflammatory response that is characterized by upregulating inflammatory cytokines in whole body, particularly in response to gram-negative bacteria. We investigated the role of IL-$32{\gamma}$ in a mouse model of experimental sepsis by using lipopolysaccharides (LPS). We found that IL-$32{\gamma}TG$ mice resisted LPS-induced lethal endotoxemia. IL-$32{\gamma}$ reduced systemic cytokines release after LPS administration but not the local immune response. IL-$32{\gamma}TG$ increased neutrophil influx into the initial foci of the primary injected site, and prolonged local cytokines and chemokines production. These results suggest that neutrophil recruitment in IL-$32{\gamma}TG$ occurred as a result of the local induction of chemokines but not the systemic inflammatory cytokine circulation. Together, our results suggest that IL-$32{\gamma}$ enhances an innate immune response against local infection but inhibits the spread of immune responses, leading to systemic immune disorder.

Keywords

References

  1. Abraham E, Wunderink R, Silverman H, Perl TM, Nasraway S, Levy H, et al. 1995. Efficacy and safety of monoclonal antibody to human tumor necrosis factor alpha in patients with sepsis syndrome. A randomized, controlled, doubleblind, multicenter clinical trial. TNF-alpha MAb Sepsis Study Group. JAMA 273: 934-941. https://doi.org/10.1001/jama.1995.03520360048038
  2. Alves-Filho JC, Freitas A, Souto FO, Spiller F, Paula-Neto H, Silva JS, et al. 2009. Regulation of chemokine receptor by Toll-like receptor 2 is critical to neutrophil migration and resistance to polymicrobial sepsis. Proc. Natl. Acad. Sci. USA 106: 4018-4023. https://doi.org/10.1073/pnas.0900196106
  3. Alves-Filho JC, Sonego F, Souto FO, Freitas A, Verri Jr WA, Auxiliadora-Martins M, et al. 2010. Interleukin-33 attenuates sepsis by enhancing neutrophil influx to the site of infection. Nat. Med. 16: 708-712. https://doi.org/10.1038/nm.2156
  4. Astiz ME, Rackow EC. 1998. Septic shock. Lancet 351: 1501- 1505. https://doi.org/10.1016/S0140-6736(98)01134-9
  5. Bae S, Kim YG, Choi J, Hong J, Lee S, Kang T, et al. 2012. Elevated interleukin-32 expression in granulomatosis with polyangiitis. Rheumatology (Oxford) 51: 1979-1988. https://doi.org/10.1093/rheumatology/kes163
  6. Choi J, Bae S, Hong J, Ryoo S, Jhun H, Hong K, et al. 2010. Paradoxical effects of constitutive human IL-32{gamma} in transgenic mice during experimental colitis. Proc. Natl. Acad. Sci. USA 107: 21082-21086. https://doi.org/10.1073/pnas.1015418107
  7. Choi JD, Bae SY, Hong JW, Azam T, Dinarello CA, Her E, et al. 2009. Identification of the most active interleukin-32 isoform. Immunology 126: 535-542. https://doi.org/10.1111/j.1365-2567.2008.02917.x
  8. Cohen J. 2002. The immunopathogenesis of sepsis. Nature 420: 885-891. https://doi.org/10.1038/nature01326
  9. Cohen J, Carlet J. 1996. INTERSEPT: an international, multicenter, placebo-controlled trial of monoclonal antibody to human tumor necrosis factor-alpha in patients with sepsis. International Sepsis Trial Study Group. Crit. Care Med. 24: 1431-1440. https://doi.org/10.1097/00003246-199609000-00002
  10. Dahl CA, Schall RP, He HL, Cairns JS. 1992. Identification of a novel gene expressed in activated natural killer cells and T cells. J. Immunol. 148: 597-603.
  11. Doherty GM, Lange JR, Langstein HN, Alexander HR, Buresh CM, Norton JA. 1992. Evidence for IFN-gamma as a mediator of the lethality of endotoxin and tumor necrosis factor-alpha. J. Immunol. 149: 1666-1670.
  12. Ellis TN, B eaman B L. 2004. I nterferon-gamma a ctivation o f polymorphonuclear neutrophil function. Immunology 112: 2-12. https://doi.org/10.1111/j.1365-2567.2004.01849.x
  13. Fisher Jr CJ, Agosti JM, Opal SM, Lowry SF, Balk RA, Sadoff JC, et al. 1996. Treatment of septic shock with the tumor necrosis factor receptor:Fc fusion protein. The Soluble TNF Receptor Sepsis Study Group. N. Engl. J. Med. 334: 1697-1702. https://doi.org/10.1056/NEJM199606273342603
  14. Fitzgerald KA, Rowe DC, Golenbock DT. 2004. Endotoxin recognition and signal transduction by the TLR4/MD2- complex. Microbes Infect. 6: 1361-1367. https://doi.org/10.1016/j.micinf.2004.08.015
  15. Freise H, Bruckner UB, Spiegel HU. 2001. Animal models of sepsis. J. Invest. Surg. 14: 195-212. https://doi.org/10.1080/089419301750420232
  16. Goda C, Kanaji T, Kanaji S, Tanaka G, Arima K, Ohno S, Izuhara K. 2006. Involvement of IL-32 in activation-induced cell death in T cells. Int. Immunol. 18: 233-240. https://doi.org/10.1093/intimm/dxh339
  17. Guha M, Mackman N. 2001. LPS induction of gene expression in human monocytes. Cell Signal. 13: 85-94. https://doi.org/10.1016/S0898-6568(00)00149-2
  18. Hack CE, Aarden LA, Thijs LG. 1997. Role of cytokines in sepsis. Adv. Immunol. 66: 101-195. https://doi.org/10.1016/S0065-2776(08)60597-0
  19. Heinhuis B, Koenders MI, van Riel PL, van de Loo FA, Dinarello CA, Netea MG, et al. 2010. Tumour necrosis factor alpha-driven IL-32 expression in rheumatoid arthritis synovial tissue amplifies an inflammatory cascade. Ann. Rheum. Dis. 70: 660-667.
  20. Hong J, Bae S, Kang Y, Yoon D, Bai X, Chan ED, et al. 2009. Suppressing IL-32 in monocytes impairs the induction of the proinflammatory cytokines TNFalpha and IL-1beta. Cytokine 49: 171-176.
  21. Hotchkiss RS, Coopersmith CM, McDunn JE, Ferguson TA. 2009. The sepsis seesaw: tilting toward immunosuppression. Nat. Med. 15: 496-497. https://doi.org/10.1038/nm0509-496
  22. Hotchkiss RS, Karl IE. 2003. The pathophysiology and treatment of sepsis. N. Engl. J. Med. 348: 138-150. https://doi.org/10.1056/NEJMra021333
  23. Joosten LA, Netea MG, Kim SH, Yoon DY, Oppers-Walgreen B, Radstake TR, et al. 2006. IL-32, a proinflammatory cytokine in rheumatoid arthritis. Proc. Natl. Acad. Sci. USA 103: 3298-3303. https://doi.org/10.1073/pnas.0511233103
  24. Kawai T, Akira S. 2010. The role of pattern-recognition receptors in innate immunity: update on Toll-like receptors. Nat. Immunol. 11: 373-384. https://doi.org/10.1038/ni.1863
  25. Kim SH, Han SY, Azam T, Yoon DY, Dinarello CA. 2005. Interleukin-32: a cytokine and inducer of TNFalpha. Immunity 22: 131-142.
  26. Kobayashi H, Huang J, Ye F, Shyr Y, Blackwell TS, Lin PC. 2010. Interleukin-32beta propagates vascular inflammation and exacerbates sepsis in a mouse model. PLoS One 5: e9458. https://doi.org/10.1371/journal.pone.0009458
  27. Kobayashi H, Yazlovitskaya EM, Lin PC. 2009. Interleukin-32 positively regulates radiation-induced vascular inflammation. Int. J. Radiat. Oncol. Biol. Phys. 74: 1573-1579. https://doi.org/10.1016/j.ijrobp.2009.04.017
  28. Koh GC, Peacock SJ, van der Poll T, Wiersinga WJ. 2011. The impact of diabetes on the pathogenesis of sepsis. Eur. J. Clin. Microbiol. Infect. Dis. 31: 379-388.
  29. Marshall JC, Cook D J, C hristou N V, B ernard G R, S prung CL, Sibbald WJ. 1995. Multiple organ dysfunction score: a reliable descriptor of a complex clinical outcome. Crit. Care Med. 23: 1638-1652. https://doi.org/10.1097/00003246-199510000-00007
  30. Martin GS, Mannino DM, Eaton S, Moss M. 2003. The epidemiology of sepsis in the United States from 1979 through 2000. N. Engl. J. Med. 348: 1546-1554. https://doi.org/10.1056/NEJMoa022139
  31. Mastroianni CM, Lichtner M, Mengoni F, D'Agostino C, Forcina G, d'Ettorre G, et al. 1999. Improvement in neutrophil and monocyte function during highly active antiretroviral treatment of HIV-1-infected patients. AIDS 13: 883-890. https://doi.org/10.1097/00002030-199905280-00003
  32. Meyer N, Zimmermann M, Burgler S, Bassin C, Woehrl S, Moritz K, et al. 2010. IL-32 is expressed by human primary keratinocytes and modulates keratinocyte apoptosis in atopic dermatitis. J. Allergy Clin. Immunol. 125: 858-865. https://doi.org/10.1016/j.jaci.2010.01.016
  33. Nakayama M, Niki Y, Kawasaki T, Takeda Y, Horiuchi K, Sasaki A, et al. 2012. Enhanced susceptibility to lipopolysaccharideinduced arthritis and endotoxin shock in interleukin-32 alpha transgenic mice through induction of tumor necrosis factor alpha. Arthritis Res. Ther. 14: R120. https://doi.org/10.1186/ar3850
  34. Netea MG, van der Meer JW, van Deuren M, Kullberg BJ. 2003. Proinflammatory cytokines and sepsis syndrome: not enough, or too much of a good thing? Trends Immunol. 24: 254-258. https://doi.org/10.1016/S1471-4906(03)00079-6
  35. Nishida A, Andoh A, Inatomi O, Fujiyama Y. 2009. Interleukin-32 expression in the pancreas. J. Biol. Chem. 284: 17868-17876. https://doi.org/10.1074/jbc.M900368200
  36. Polk Jr HC, Cheadle WG, Livingston DH, Rodriguez JL, Starko KM, Izu AE, et al. 1992. A randomized prospective clinical trial to determine the efficacy of interferon-gamma in severely injured patients. Am. J. Surg. 163: 191-196. https://doi.org/10.1016/0002-9610(92)90099-D
  37. Remick DG. 2007. Pathophysiology of sepsis. Am. J. Pathol. 170: 1435-1444. https://doi.org/10.2353/ajpath.2007.060872
  38. Riedemann NC, Guo RF, Ward PA. 2003. Novel strategies for the treatment of sepsis. Nat. Med. 9: 517-524. https://doi.org/10.1038/nm0503-517
  39. Ryoo S, Lee S, Jo S, Kwak A, Kim E, Lee J, et al. 2014. Effect of lipopolysaccharide (LPS) on mouse model of steroidinduced avascular necrosis in the femoral head (ANFH). J. Microbiol. Biotechnol. 24: 394-400. https://doi.org/10.4014/jmb.1311.11057
  40. Schlag G, Redl H, Davies J, Haller I. 1994. Anti-tumor necrosis factor antibody treatment of recurrent bacteremia in a baboon model. Shock 2: 10-18; discussion 19-22. https://doi.org/10.1097/00024382-199407000-00002
  41. Shioya M, Nishida A, Yagi Y, Ogawa A, Tsujikawa T, Kim- Mitsuyama S, et al. 2007. Epithelial overexpression of interleukin- 32alpha in inflammatory bowel disease. Clin. Exp. Immunol. 149: 480-486. https://doi.org/10.1111/j.1365-2249.2007.03439.x
  42. Shoda H, Fujio K, Yamaguchi Y, Okamoto A, Sawada T, Kochi Y, Yamamoto K. 2006. Interactions between IL-32 and tumor necrosis factor alpha contribute to the exacerbation of immune-inflammatory diseases. Arthritis Res. Ther. 8: R166. https://doi.org/10.1186/ar2074

Cited by

  1. Characterization of Toll-Like Receptor-4 (TLR-4) in the Spleen and Thymus of Swiss Albino Mice and Its Modulation in Experimental Endotoxemia vol.2015, pp.None, 2014, https://doi.org/10.1155/2015/137981
  2. Important Role of the IL-32 Inflammatory Network in the Host Response against Viral Infection vol.7, pp.6, 2014, https://doi.org/10.3390/v7062762
  3. IL-32: A Novel Pluripotent Inflammatory Interleukin, towards Gastric Inflammation, Gastric Cancer, and Chronic Rhino Sinusitis vol.2016, pp.None, 2014, https://doi.org/10.1155/2016/8413768
  4. IL-32-induced Inflammatory Cytokines Are Selectively Suppressed by α1-antitrypsin in Mouse Bone Marrow Cells vol.17, pp.2, 2014, https://doi.org/10.4110/in.2017.17.2.116
  5. Interleukin-32: its role in asthma and potential as a therapeutic agent vol.19, pp.None, 2018, https://doi.org/10.1186/s12931-018-0832-x
  6. Human Interleukin-32γ Plays a Protective Role in an Experimental Model of Visceral Leishmaniasis in Mice vol.86, pp.5, 2014, https://doi.org/10.1128/iai.00796-17
  7. Interleukin 32 expression in human melanoma vol.17, pp.None, 2014, https://doi.org/10.1186/s12967-019-1862-y
  8. Interleukin-32 in Infection, Inflammation and Cancer Biology vol.21, pp.1, 2014, https://doi.org/10.1515/sjecr-2016-0085
  9. Molecular interactions and functions of IL‐32 vol.109, pp.1, 2021, https://doi.org/10.1002/jlb.3mr0620-550r
  10. Interleukin-32 in Pathogenesis of Atopic Diseases: Proinflammatory or Anti-Inflammatory Role? vol.41, pp.7, 2014, https://doi.org/10.1089/jir.2020.0230