DOI QR코드

DOI QR Code

Hsp20, a Small Heat Shock Protein of Deinococcus radiodurans, Confers Tolerance to Hydrogen Peroxide in Escherichia coli

  • Singh, Harinder (Research Division for Biotechnology, Korea Atomic Energy Research Institute) ;
  • Appukuttan, Deepti (Research Division for Biotechnology, Korea Atomic Energy Research Institute) ;
  • Lim, Sangyong (Research Division for Biotechnology, Korea Atomic Energy Research Institute)
  • 투고 : 2014.03.05
  • 심사 : 2014.04.16
  • 발행 : 2014.08.28

초록

The present study shows that DR1114 (Hsp20), a small heat shock protein of the radiation-resistant bacterium Deinococcus radiodurans, enhances tolerance to hydrogen peroxide ($H_2O_2$) stress when expressed in Escherichia coli. A protein profile comparison showed that E. coli cells overexpressing D. radiodurans Hsp20 (EC-pHsp20) activated the redox state proteins, thus maintaining redox homeostasis. The cells also showed increased expression of pseudouridine (psi) synthases, which are important to the stability and proper functioning of structural RNA molecules. We found that the D. radiodurans mutant strain, which lacks a psi synthase (DR0896), was more sensitive to $H_2O_2$ stress than wild type. These suggest that an increased expression of proteins involved in the control of redox state homeostasis along with more stable ribosomal function may explain the improved tolerance of EC-pHsp20 to $H_2O_2$ stress.

키워드

참고문헌

  1. Becker HF, Motorin Y, Planta RJ, Grosjean H. 1997. The yeast gene YNL292w encodes a pseudouridine synthase (PUS4) catalyzing the formation of psi55 in both mitochondrial and cytoplasmic tRNA. Nucleic Acids Res. 25: 4493-4499. https://doi.org/10.1093/nar/25.22.4493
  2. Bepperling A, Alte F, Kriehuber T, Braun N, Weinkauf S, Groll M, et al. 2012. Alternative bacterial two-component small heat shock protein systems. Proc. Natl. Acad. Sci. USA 109: 20407-20412. https://doi.org/10.1073/pnas.1209565109
  3. Del Campo M, Recinos C, Yanez G, Pomerantz SC, Guymon R, Crain PF, et al. 2005. Number, position, and significance of the pseudouridines in the large subunit ribosomal RNA of Haloarcula marismortui and Deinococcus radiodurans. RNA 11: 210-219. https://doi.org/10.1261/rna.7209905
  4. DeJong W, Leunissen J, Voorter C. 1993. Evolution of the alpha-crystallin/small heat-shock protein family. Mol. Biol. Evol. 10: 103-126.
  5. Elsen S, Efthymiou G, Peteinatos P, Diallinas G, Kyritsis P, Moulis JM. 2010. A bacteria-specific 2[4Fe-4S] is essential in Pseudomonas aeruginosa. BMC Microbiol. 10: 271. https://doi.org/10.1186/1471-2180-10-271
  6. Eyles S, Gierasch L. 2010. Nature's molecular sponges: small heat shock proteins grow into their chaperone roles. Proc. Natl. Acad. Sci. USA 107: 2727-2728. https://doi.org/10.1073/pnas.0915160107
  7. Fontecave M, Ollagnier-de-Choudens S. 2008. Iron-sulfur cluster biosynthesis in bacteria: mechanisms of cluster assembly and transfer. Arch. Biochem. Biophys. 474: 226-237. https://doi.org/10.1016/j.abb.2007.12.014
  8. Giro M, Ceccoli RD, Poli HO, Carrillo N, Lodeyro AF. 2011. An in vivo system co-expressing cyanobacterial flavodoxin and ferredoxin-$NADP^{+}$ reductase confers increased tolerance to oxidative stress in plants. FEBS Open Bio 1: 7-13. https://doi.org/10.1016/j.fob.2011.10.004
  9. Feder ME, Hofmann GE. 1999. Heat-shock proteins, molecular chaperones and the stress response: evolutionary and ecological physiology. Annu. Rev. Physiol. 61: 243-282. https://doi.org/10.1146/annurev.physiol.61.1.243
  10. Horwitz J. 1992. Alpha-crystallin can function as a molecular chaperone. Proc. Natl. Acad. Sci. USA 89: 10449-10453. https://doi.org/10.1073/pnas.89.21.10449
  11. Im S, Song D, Joe M, Kim D, Park DH, Lim S. 2013. Comparative survival analysis of 12 histidine kinase mutants of Deinococcus radiodurans after exposure to DNA-damaging agents. Bioprocess Biosyst. Eng. 36: 781-789. https://doi.org/10.1007/s00449-013-0904-8
  12. Ishihama Y, Oda Y, Tabata T, Sato T, Nagasu T, Rappsilber J, Mann M. 2005. Exponentially modified protein abundance index (emPAI) for estimation of absolute protein amount in proteomics by the number of sequenced peptides per protein. Mol. Cell Proteomics 4: 1265-1272. https://doi.org/10.1074/mcp.M500061-MCP200
  13. Kaya Y, Ofengand J. 2003. A novel unanticipated type of pseudouridine synthase with homologs in bacteria, archea, and eukarya. RNA 9: 711-721. https://doi.org/10.1261/rna.5230603
  14. Kim YH, Cho K, Yun SH, Kim JY, Kwon KH, Yoo JS, Kim SI. 2006. Analysis of aromatic catabolic pathways in Pseudomonas putida KT 2440 using a combined proteomic approach: 2-DE/MS and cleavable isotope-coded affinity tag analysis. Proteomics 6: 1301-1318. https://doi.org/10.1002/pmic.200500329
  15. Kinghorn S, Conor OB, Booth I, Stansfield I. 2002. Physiological analysis of the role of truB in Escherichia coli: a role for tRNA modification in extreme temperature resistance. Microbiology 148: 3511-3520. https://doi.org/10.1099/00221287-148-11-3511
  16. Kota S, Misra HS. 2006. PprA: a protein implicated in radioresistance of Deinococcus radiodurans stimulates catalase activity in Escherichia coli. Appl. Microbiol. Biotechnol. 72: 790-796. https://doi.org/10.1007/s00253-006-0340-7
  17. Li DC, Yang F, Lu B, Chen DF, Yang WJ. 2012. Thermotolerance and molecular chaperone function of the small heat shock protein HSP20 from hyperthermophilic archaeon, Sulfolobus solfataricus P2. Cell Stress Chaperones 17: 103-108. https://doi.org/10.1007/s12192-011-0289-z
  18. Makarova K, Arvind L, Wolf YI, Tatusov RL, Minton KW, Koonin EV, Daly MJ. 2001. Genome of the extremely radiation-resistant bacterium Deinococcus radiodurans viewed from the perspective of comparative genomics. Microbiol. Mol. Biol. Rev. 65: 44-79. https://doi.org/10.1128/MMBR.65.1.44-79.2001
  19. Ofengand J. 2002. Ribosomal RNA pseudouridines and pseudouridine synthases. FEBS Lett. 514: 17-25. https://doi.org/10.1016/S0014-5793(02)02305-0
  20. Pan J, Wang J, Zhou Z, Yan Y, Zhang W, Lu W, et al. 2009. IrrE, a global regulator of extreme radiation resistance in Deinococcus radiodurans, enhances salt tolerance in Escherichia coli and Brassica napus. PLoS One 4: e4422. https://doi.org/10.1371/journal.pone.0004422
  21. Rappsilber J, Ryder U, Lamond AI, Mann M. 2002. Large scale proteomic analysis of human spliceosome. Genome Res. 12: 1231-1245. https://doi.org/10.1101/gr.473902
  22. Rodriguez-Manzaneque MT, Ros J, Cabiscol E, Sorribas A, Herrero E. 1999. Grx5 glutaredoxin plays a central role in protection against protein oxidative damage in Saccharomyces cerevisiae. Mol. Cell. Biol. 19: 8180-8190. https://doi.org/10.1128/MCB.19.12.8180
  23. Sage AE, Vasil AI, Vasil ML. 1997. Molecular characterization of mutants affected in osmoprotectant-dependant induction of phospholipase C in Pseudomonas aeruginosa POA1. Mol. Microbiol. 23: 43-56. https://doi.org/10.1046/j.1365-2958.1997.1681542.x
  24. Schmid AK, Howell HA, Battista JR, Peterson SN, Lidstrom ME. 2005. Global transcriptional and proteomic analysis of the Sig1 heat shock regulon of Deinococcus radiodurans. J. Bacteriol. 187: 3339-3351. https://doi.org/10.1128/JB.187.10.3339-3351.2005
  25. Sun Y, MacRae TH. 2005. Small heat shock proteins: molecular structure and chaperone function. Cell Mol. Life Sci. 62: 2460-2476. https://doi.org/10.1007/s00018-005-5190-4
  26. Sunita S, Zhenxing H, Swaathi J, Cygler M, Matte A, Sivaraman J. 2006. Domain organization and crystal structure of the catalytic domain of E. coli RluF, a pseudouridine synthase that acts on 23S rRNA. J. Mol. Biol. 359: 998-1009. https://doi.org/10.1016/j.jmb.2006.04.019

피인용 문헌

  1. PprM, a Cold Shock Domain-Containing Protein from Deinococcus radiodurans , Confers Oxidative Stress Tolerance to Escherichia coli vol.7, pp.None, 2014, https://doi.org/10.3389/fmicb.2016.02124
  2. The reduced state of the plastoquinone pool is required for chloroplast‐mediated stomatal closure in response to calcium stimulation vol.86, pp.2, 2014, https://doi.org/10.1111/tpj.13154
  3. Targeting Hsp20 Using the Novel Small Non-coding RNA DnrH Regulates Heat Tolerance in Deinococcus radiodurans vol.10, pp.None, 2014, https://doi.org/10.3389/fmicb.2019.02354
  4. RNA-Seq-Based Comparative Transcriptome Analysis Highlights New Features of the Heat-Stress Response in the Extremophilic Bacterium Deinococcus radiodurans vol.20, pp.22, 2014, https://doi.org/10.3390/ijms20225603
  5. Disproportionate microbial responses to decadal drainage on a Siberian floodplain vol.27, pp.20, 2014, https://doi.org/10.1111/gcb.15785
  6. A major checkpoint for protein expression in Rhodobacter sphaeroides during heat stress response occurs at the level of translation vol.23, pp.11, 2014, https://doi.org/10.1111/1462-2920.15818