References
- Clifford MN. 1999. Chlorogenic acids and other cinnamates - nature, occurrence and dietary burden. J. Sci. Food Agric. 79: 362-372. https://doi.org/10.1002/(SICI)1097-0010(19990301)79:3<362::AID-JSFA256>3.0.CO;2-D
- Draths KM, Knop DR, Frost JW. 1999. Shikimic acid and quinic acid: replacing isolation from plant sources with recombinant microbial biocatalysis. J. Am. Chem. Soc. 121: 1603-1604. https://doi.org/10.1021/ja9830243
- Dixon RA, Paiva NL. 1995. Stress-induced phenylpropanoid metabolism. Plant Cell 7: 1085-1097. https://doi.org/10.1105/tpc.7.7.1085
- E l-Seedi HR, El-Seed AMA, Khalifa SAM, Görassonu, Bohlin L, Borg-Karlson AK, Verpoorte R. 2012. Biosynthesis, natural sources, dietary intake, pharmacokinetic properties, and biological activities of hydroxycinnamic acids. J. Agric. Food Chem. 60: 10877-10895. https://doi.org/10.1021/jf301807g
- E ly B, Pittard J. 1979. Aromatic amino acid biosynthesis: regulation of shikimate kinase in Escherichia coli K-12. J. Bacterol. 138: 933-943.
- Goup y PM, Varoquaux PJA, Nicolas JJ, Macheix JJ. 1990. Identification and localization of hydroxycinnamoyl and flavonol derivatives from endive (Cichorium endivia L cv Geante Maraichere) leaves. J. Agric. Food Chem. 38: 2116-2121. https://doi.org/10.1021/jf00102a003
- Herrmann K. 1989. Occurrence and content of hydroxycinnamic acid and hydoxybenzoic acid compounds in foods. Crit. Rev. Food Sci. Nutr. 28: 315-347. https://doi.org/10.1080/10408398909527504
- Hoff mann L, Maury S, Martz F, Geoffroy P, Legrand M. 2003. Purification, cloning, and properties of an acyltransferase controlling shikimate and quinate ester intermediates in phenylpropanoid metabolism. J. Biol. Chem. 278: 95-103. https://doi.org/10.1074/jbc.M209362200
- Ka ng S-Y, Choi O, Lee JK, Hwang BY, Im T-B, Hong Y-S. 2012. Artificial biosynthesis of phenylpropanoic acids in a tyrosine overproducing Escherichia coli s train. Microb. Cell Fact. 11: 153. https://doi.org/10.1186/1475-2859-11-153
- Kim BG, Jung WD, Mok H, Ahn J-H. 2013. Production of hydroxycinnamoyl-shikimates and chlorogenic acid in Escherichia coli: production of hydroxycinnamic acid conjugates. Microb. Cell Fact. 12: 15. https://doi.org/10.1186/1475-2859-12-15
- Kim MJ, Kim B-G, Ahn J-H. 2013. Biosynthesis of bioactive O-methylated flavonoids in Escherichia coli. Appl. Microbiol. Biotechnol. 97: 7195-7204. https://doi.org/10.1007/s00253-013-5020-9
- Kramer M, Bongaerts J, Bovenberg R, Kremer S, Muller U, Orf S, et al. 2003. Metabolic engineering for microbial production of shikimic acid. Met. Eng. 5: 277-283. https://doi.org/10.1016/j.ymben.2003.09.001
- Lin Y, Yan Y. 2012. Biosynthesis of caffeic acid in Escherichia coli using its endogenous hydroxylase complex. Microb. Cell Fact. 11: 42. https://doi.org/10.1186/1475-2859-11-42
- L indner HA, Nadeau G, Matte A, Michel G, Ménard R, Cygler M. 2005. Site-directed mutagenesis of the active site region in the quinate/shimate 5-dehydrogenase YdiB of Escherichia coli. J. Biol. Chem. 280: 7162-7169. https://doi.org/10.1074/jbc.M412028200
- Lütke-Eversloh T, Stephanopoulos G. 2007. L-Tyrosine production by deregulated strains of Escherichia coli. Appl. Microbiol. Biotechnol. 75: 103-110. https://doi.org/10.1007/s00253-006-0792-9
- Rumbero-Sanchez A, Vazquez P. 1991. Quinic acid esters from Isertia haenkeana. Phytochemistry 30: 311-313. https://doi.org/10.1016/0031-9422(91)84144-H
- Stev enson PC, Anderson JC, Blaney M, Simmonds MSJ. 1993. Developmental inhibition of Spodoptera litura (Fab) larvae by a novel caffeoylquinic acid from wild groundnut Arachis paraguariensis (Chod et Hassl). J. Chem. Ecol. 19: 2917-2933. https://doi.org/10.1007/BF00980592
- Upadhyay R, Rao LJM. 2013. An outlook on chlorogenic acids - occurrence, chemistry, technology, and biological activities. Crit. Rev. Food Sci. Nutr. 53: 968-984. https://doi.org/10.1080/10408398.2011.576319
- Vogt T. 2010. Phenylpropanoid biosynthesis. Mol. Plant 3: 2-20. https://doi.org/10.1093/mp/ssp106
- Winkel-Shirley B. 2001. Flavonoid biosynthesis. A colorful model for genetics, biochemistry, cell biology, and biotechnology. Plant Physiol. 126: 485-493. https://doi.org/10.1104/pp.126.2.485
- Zhang H, Stephanopoulos G. 2013. Engineering E. coli for caffeic acid biosynthesis from renewable sugars. Appl. Microbiol. Biotechnol. 97: 3333-3341. https://doi.org/10.1007/s00253-012-4544-8
Cited by
- Exploiting members of the BAHD acyltransferase family to synthesize multiple hydroxycinnamate and benzoate conjugates in yeast vol.15, pp.None, 2014, https://doi.org/10.1186/s12934-016-0593-5
- Puccinellia maritima, Spartina maritime, and Spartina patens Halophytic Grasses: Characterization of Polyphenolic and Chlorophyll Profiles and Evaluation of Their Biological Activities vol.24, pp.20, 2019, https://doi.org/10.3390/molecules24203796
- Recent Advances in Metabolically Engineered Microorganisms for the Production of Aromatic Chemicals Derived From Aromatic Amino Acids vol.8, pp.None, 2014, https://doi.org/10.3389/fbioe.2020.00407
- Metabolic engineering of Escherichia coli for production of chemicals derived from the shikimate pathway vol.47, pp.6, 2014, https://doi.org/10.1007/s10295-020-02288-2
- De Novo Biosynthesis of Chlorogenic Acid Using an Artificial Microbial Community vol.69, pp.9, 2014, https://doi.org/10.1021/acs.jafc.0c07588
- Cell-free Biosynthesis of Chlorogenic Acid Using a Mixture of Chassis Cell Extracts and Purified Spy-Cyclized Enzymes vol.69, pp.28, 2021, https://doi.org/10.1021/acs.jafc.1c03309
- Biosynthesis of resveratrol derivatives and evaluation of their anti-inflammatory activity vol.64, pp.1, 2014, https://doi.org/10.1186/s13765-021-00607-4