References
- Akira K, Hichiya H, Morita M, Shimizu A, Mitome H. 2013. Metabonomic study on the biochemical response of spontaneously hypertensive rats to chronic taurine supplementation using H-1 NMR spectroscopic urinalysis. J. Pharmaceut. Biomed. 85: 155-161. https://doi.org/10.1016/j.jpba.2013.07.018
- Brosnan JT, Brosnan ME. 2006. The sulfur-containing amino acids: an overview. J. Nutr. 136: 1636S-1640S. https://doi.org/10.1093/jn/136.6.1636S
- Chohan ZH, Mahmood-Ul-Hassan, Khan KM, Supuran CT. 2005. In-vitro antibacterial, antifungal and cytotoxic properties of sulfonamide-derived Schiff's bases and their metal complexes. J. Enzym. Inhib. Med. Chem. 20: 183-188. https://doi.org/10.1080/14756360500043257
- Clinical and Laboratory Standards Institute. 2006. Methods for Dilution Antimicrobial Susceptibility Tests for Bacteria that Grow Aerobically, 7th Ed. Approved standard M7-A7. Clinical and Laboratory Standards Institute, Wayne, PA.
- Costerton JW, Cheng KJ, Geesey GG, Ladd TI, Nickel JC, Dasgupta M , Marrie T J. 1987. B acterial b iofilm s in n ature and disease. Annu. Rev. Microbiol. 41: 435-464. https://doi.org/10.1146/annurev.mi.41.100187.002251
- de la Fuente-Nunez C, Reffuveille F, Fernandez L, Hancock RE. 2013. Bacterial biofilm development as a multicellular adaptation: antibiotic resistance and new therapeutic strategies. Curr. Opin. Microbiol. 16: 580-589. https://doi.org/10.1016/j.mib.2013.06.013
- da Silva CM, da Silva DL, Modolo LV, Alves RB, de Resende MA, Martins CVB, de Fatima A. 2011. Schiff bases: a short review of their antimicrobial activities. J. Adv. Res. 2: 1-8. https://doi.org/10.1016/j.jare.2010.05.004
- Diao YP, Zheng ZB, Huang SS, Zhang HL, Liu KX, Li K, Kang TG. 2009. Crystal structure and activity against acetaminophen-induced hepatotoxicity of a potassium complex with taurine-5-bromosalicylaldehyde Schiff bases. Chinese J. Struc. Chem. 28: 771-774.
- Jia F, Yue M, Chandra D, Keramidas A, Goldstein PA, Homanics GE, Harrison NL. 2008. Taurine is a potent activator of extrasynaptic GABA (A) receptors in the thalamus. J. Neurosci. 28: 106-115. https://doi.org/10.1523/JNEUROSCI.3996-07.2008
- Hartmann M, Berditsch M, Hawecker J, Ardakani MF, Gerthsen D , Ulrich A S. 2010. Damage of the bacterial cell envelope by antimicrobial peptides gramicidin S and PGLa as revealed by transmission and scanning electron microscopy. Antimicrob. Agents Chemother. 54: 3132-3142. https://doi.org/10.1128/AAC.00124-10
- Kardas-Sloma L, Boelle PY, Opatowski L, Brun-Buisson C, Guillemot D, Temime L. 2011. Impact of antibiotic exposure patterns on selection of community-associated methicillinresistant Staphylococcus aureus in hospital settings. Antimicrob. Agents Chemother. 55: 4888-4895. https://doi.org/10.1128/AAC.01626-10
- Lei JT, Jiang YX, Tao LY, Huang SS, Zhang HL. 2008. N'-(3- Ethoxy-2-hydroxybenzylidene)-3-hydroxynaphthalene-2- carbohydrazide. Acta Crystallogr. E 64: o909. https://doi.org/10.1107/S1600536808010933
-
Li XR, Huang SS, Li CX. 2012. Crystal structure of 3,5- dihydroxy-N'-(1-naphthylmethyl) benzohydrazide monohydrate,
$C_{18}H_{14}N_{2}O_{3},H_{2}O$ . Z. Krist New Cryst. Struct. 227: 167-168. - National Committee for Clinical Laboratory Standards. 1992. Methods for determining bactericidal activity of antimicrobial agents; tentative guideline. Document M26-T. NCCLS, Wayne, PA, USA.
- Okesola AO. 2011. Community-acquired methicillin-resistant Staphylococcus aureus - a review of literature. Afr. J. Med. Med. Sci. 40: 97-107.
- Pieczonka AM, Strzelczyk A, Sadowska B, Mloston G, Staczek P. 2013. Synthesis and evaluation of antimicrobial activity of hydrazones derived from 3-oxido-1H-imidazole- 4-carbohydrazides. Eur. J. Med. Chem. 64: 389-395. https://doi.org/10.1016/j.ejmech.2013.04.023
- Poulter N, Donaldson M, Mulley G, Duque L, Waterfield N, Shard AG, et al. 2011. Plasma deposited metal Schiff-base compounds as antimicrobials. New J. Chem. 35: 1477-1484. https://doi.org/10.1039/c1nj20091g
- Prince AS. 2002. Biofilms, antimicrobial resistance, and airway infection. N. Engl. J. Med. 347: 1110-1111. https://doi.org/10.1056/NEJMcibr021776
- Przybylski P, Huczynski A, Pyta K, Brzezinski B, Bartl F. 2009. Biological properties of Schiff bases and azo derivatives of phenols. Curr. Org. Chem. 13: 124-148. https://doi.org/10.2174/138527209787193774
- Raman N, Dhaveethu Raja J, Sakthivel A. 2007. Synthesis, spectral characterization of Schiff base transition metal complexes: DNA cleavage and antimicrobial activity studies. J. Chem. Sci. 119: 303-310. https://doi.org/10.1007/s12039-007-0041-5
- Shi L, Ge HM, Tan SH, Li HQ, Song YC, Zhu HL, Tan RX. 2007. Synthesis and antimicrobial activities of Schiff bases derived from 5-chloro-salicylaldehyde. Eur. J. Med. Chem. 42: 558-564. https://doi.org/10.1016/j.ejmech.2006.11.010
- Wei GX, Campagna AN, Bobek LA. 2006. Effect of MUC7 peptides on the growth of bacteria and on Streptococcus mutans biofilm. J. Antimicrob. Chemother. 57: 1100-1109. https://doi.org/10.1093/jac/dkl120
- Xu L, Huang SS, Zhang BJ, Wang SY, Zhang HL. 2009. 2, 4- Dihydroxy-N-(3,4,5-trimethoxybenzylidene)benzohydrazide. Acta Crystallogr. E 65: o2412. https://doi.org/10.1107/S1600536809035764
- Yao QY, Wang L, Du Z, Li K, Lin Y. 2013. Characterization and biological evaluation of structurally modified taurine using benzaldehydes. Asian J. Chem. 25: 7843-7846.
Cited by
- Synergistic Effects Between Thioxanthones and Oxacillin Against Methicillin-Resistant Staphylococcus aureus vol.21, pp.4, 2015, https://doi.org/10.1089/mdr.2014.0162
- Combined Effects of Curcumin and (-)-Epigallocatechin Gallate on Inhibition of N-Acylhomoserine Lactone-Mediated Biofilm Formation in Wastewater Bacteria from Membrane Bioreactor vol.25, pp.11, 2015, https://doi.org/10.4014/jmb.1506.06010
- Antimicrobial activity of prodigiosin is attributable to plasma-membrane damage vol.31, pp.5, 2014, https://doi.org/10.1080/14786419.2016.1195380