References
- Apache Mahout, http://mahout.apache.org.
- D. M. Blei, A. Y. Ng, and M. I. Jordan. Latent dirichlet allocation. J. Mach. Learn. Res., 3:993-1022, Mar. 2003.
- K. Canini, L. Shi, and T. Griffiths. Online inference of topics with latent dirichlet allocation. In Proceedings of the International Conference on Artificial Intelligence and Statistics, volume 5, pages 65-72, 2009.
- T. Griffiths and M. Steyvers. Finding scientific topics. Proceedings of the National Academy of Sciences of the United States of America, 101 (Suppl 1):5228-5235, 2004. https://doi.org/10.1073/pnas.0307752101
- J. Hennessy and D. Patterson. Computer architecture: a quantitative approach. Morgan Kaufmann, 2011.
- M. Hoffman, D. Blei, and F. Bach. Online learning for latent dirichlet allocation. Advances in Neural Information Processing Systems, 23:856-864, 2010.
- J. Mairal, F. Bach, J. Ponce, and G. Sapiro. Online learning for matrix factorization and sparse coding. The Journal of Machine Learning Research, 11: 19-60, 2010.
- L. Mariote, C. Medeiros, and R. da Torres. Parallelized variational em for latent dirichlet allocation: An experimental evaluation of speed and scalability. In Data Mining Workshops, 2007. ICDM Workshops 2007. Seventh IEEE International Conference on, pages 349-354. IEEE, 2007.
- A. K. McCallum. Mallet: A machine learning for language toolkit. http://www.cs.umass.edu/mccallum/mallet, 2002.
- D. Newman, A. Asuncion, P. Smyth, and M. Welling. Distributed algorithms for topic models. The Journal of Machine Learning Research, 10: 1801-1828, 2009.
- C. Robelt and G. Casella. Monte Carlo Statistical Methods. Springer, 2004.
- M. Schatz. Cloudburst: highly sensitive read mapping with mapreduce. Bioinformatics, 25(11): 1363-1369, 2009. https://doi.org/10.1093/bioinformatics/btp236
- A. Smola and S. Narayanamurthy. An architecture for parallel topic models. Proceedings of the VLDB Endowment, 3(1-2):703-710, 2010. https://doi.org/10.14778/1920841.1920931
- Y. Teh, M. Jordan, M. Beal, and D. Blei. Hierarchical dirichlet processes. Journal of the American Statistical Association, 101(476):1566-1581, 2006. https://doi.org/10.1198/016214506000000302
- C. Wang, J. Paisley, and D. Blei. Online variational inference for the hierarchical dirichlet process. In Proc. AISTATS. 2011.
- Y. Wang, H. Bai, M. Stanton, W. Chen, and E. Chang. Plda: Parallel latent dirichlet allocation for large-scale applications. Algorithmic Aspects in Information and Management, pages 301-314, 2009.
- K. Zhai, J. Boyd-Graber, N. Asadi, and M. L. Alkhouja. Mr. lda: a flexible large scale topic modeling package using variational inference in mapreduce. In Proceedings of the 21 st international conference on World Wide Web, WWW'12, pages 879 - 888, New York, NY, USA, 2012. ACM.