

국내 학교시설 내진보강을 위한 내진성능 상세 평가법

A Methodology for Seismic Capacity Evaluation of Low-rise R/C School Buildings

이강선 Kang-Seok Lee 전남대학교 공과대학 건축학부 교수

1 머리말

대다수 6층 이하의 중·저층 철근콘크리트(이하, RC) 학교 건물은 취성적인 파괴성상을 나타내는 전단벽(shear wall). 단주(short column) 등의 전단파괴형 부재 및 소성능력이 탁월한 기둥 등의 휨 파괴형 부재로 이루어져 있다. 따라서 전 단 및 휨 파괴형 부재가 혼합된 RC 학교 건물은 이들 부재들의 내력 및 연성능력과 지진입력수준과의 역학적 상관관계 가 고려된 내진성능 평가법에 의해서 내진성능을 평가해야 한다. 그러나 FEMA 356¹, 일본 내진진단법² 등에서 상기 전 단 및 휨 파괴형 부재가 혼합된 중·저층 RC 건물의 내력 및 연성능력과 지진입력수준과의 역학적 상관관계에 대해서는 충분한 검토가 수행되지 않았으며, 또한 조적조 징두리벽체 및 조적조 칸막이 벽체를 가지는 국내 학교 건물 적용 시 많 은 공학적인 판단이 필요하다.

상기의 배경 하에 2011년 6월(2012년 2월 개정)에 교육과학기술부에서는 비 내진상세를 가지는 국내 학교 건물의 내 진대책을 위하여 학교시설 내진성능 평가 및 내진보강 가이드라인³⁾을 제정하였다. 상기 가이드라인을 바탕으로 교육과 학기술부는 비 내진상세를 가지는 학교시설의 내진보강사업을 시도교육청 시설과 함께 주관하였으며, 현재 수십 동에 해당 학교시설 내진보강사업을 완료하였으며, 향후 계속적으로 학교시설 내진보강사업을 추진 중에 있다.

본 고에서는 학교시설 내진성능 평가 및 내진보강 가이드라인 가운데 내진보강의 여부를 판정하는 상세 내진성능 평 가법을 소개한다.

2. 학교 건물의 내진성능 상세평가법의 개요

내진성능 상세평가는 원칙적으로 보의 강도가 충분히 강하다고 가정을 하고 건물이 가지는 보유성능(극한강도와 극한 변형을 이용한 비선형 이력거동)을 가략하게 계산하여 그 결과를 비선형요구내력스펙트럼을 통해 3.2절에 나타낸 평가 용 최대 지진가속도 수준까지 순차적으로 지진손상도를 추정(잔존 내진성능)하여 내진성능을 평가한다. 보유성능은 수 직부재의 배근상세 등을 이용하여 계산되는 부재의 극한강도 및 극한연성률(연성지표)에 근거하여 계산 하며, 상세평가 에서는 극단주 등의 국부적인 파괴부재. 휨파괴형 부재 및 전단파괴형 부재의 영향이 고려된다. 또한, 본 지침에 의한 내 진성능 상세평가에서는 평가 학교건물 전체 층의 장변(X) 방향 및 단변(Y) 방향에 대하여 각각 독립적으로 수행하는 것

16 Magazine of the Korea Concrete Institute

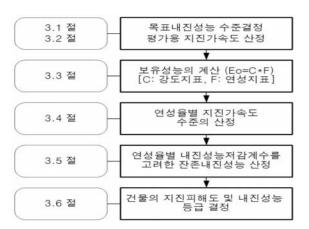


그림 1. 학교 건물의 내진성능 상세 평가법의 흐름도 을 워칙으로 한다.

〈그림 1〉에는 학교 건물의 내진성능 상세 평가법의 흐름도를 나타낸다. 〈그림 1〉에 나타낸 바와 같이 내진 성능 평가는 ①목표 내진성능 수준의 결정(3.1절), ② 평 가용 지진가속도 산정(3.2절). ③ 보유성능의 계산(3.3 절), ④ 연성율별 지진가속도 수준의 산정(3.4절), ⑤ 연 성육별 내진성능저감계수를 고려한 잔존내진성능 산정 (3.5절), ⑥ 건물의 지진피해도 및 내진성능 등급 결정 (3.6절)의 순서로 이루어져있다. 이하에는 각 단계별 상 세를 나타낸다.

3. 내진성능 상세 평가법의 내용

3.1 목표 내진성능 수준

본 지침에서 기존 학교건물의 기본 안전 목표(Basic Safety Objective, BSO)는 〈표 1〉에 나타낸 바와 같 이 50년에 2% 초과 발생확률 지진(2400년 재현주기)의 2/3 수준에 대해서 인명안전수준(Life Safety Level, LS)이 되도록 기본 목표내진성능(B 등급)을 설정한다. 또한, 내진성능 평가자의 공학적 판단에 의거하여 증진 된(enhanced) 목표내진성능(A 등급), 즉 50년에 2% 초 과 발생확률 지진(2400년 재현주기)의 2/3 수준에 대해

표 1. 기존 학교건의 기본 목표내진성능 수준

지진위험도	즉시거주(IO)	인명안전(LS)
2400년 재현주기의 2/3	◎ : A등급	● : B등급

^{◎ :} Enhanced 목표내진성능(A등급: Excellent)

서 즉시거주수준(Immediate Occupancy Level)을 목 표성능으로 설정가능하다. 내진성능 평가는 기존 학교 건물이 이러한 목표성능을 확보하고 있는지를 평가하여 야 하다

3.2 평가용 지진가속도 산정

내진성능 상세평가를 위한 입력 지진가속도(α)는 각 지진구역별 2400년 재현주기 지진의 유효지반가속도(S) 로 정의하였으며, 식(1)에 의해서 산정을 한다.

$$\alpha = \frac{S_{DS}}{2.5} = S \times F_a \times 2/3$$
 (2500년 재현주기 2/3 수준의 경우) · · · · · · (1)

여기서, S: 유효지반가속도

 F_{\circ} : 지반종류에 따른 지반증폭계수 S_{DS} : 단주기의 설계스펙트럼가속도

3.3 보유성능의 계산

내진성능 상세평가에서는 대상으로 하는 층 개개의 수직부재 파괴형식(표 2). 극한내력 시 전단력(강도지

표 2. 내진성능 상세평가용 수직부재의 파괴형식에 의한 분류

명칭	정의
휨 기둥	휨 항복이 전단파괴보다 선행하는 기둥
휨 벽체	휨 항복이 전단파괴보다 선행하는 벽
전단기둥	전단파괴가 휨 항복보다 선행하는 기둥, 단, 극취성 기둥은 제외
전단벽체	전단파괴가 휨 항목보다 선행하는 벽
끼움조적벽체	기둥, 보 프레임 내에 벽돌 및 블록을 충진한 벽체
극취성 기둥	ho/D가 2 이하(극단주)이고, 전단파괴가 휨 항복보다 선행하는 기둥

표 3. α₂ 및 α₃의 값

식(2)의 α ₂ 의 값			식(2)의 α ₃ 의 값		
제1 그룹 제2 그룹	극취성 기둥	전단기둥 전단벽 끼움조적 벽체	제1 그룹 제3 그룹	극취성 기둥	전단기둥 전단벽 끼움조적 벽체
휨기둥	0.5	0.7	휨기둥	0.5	0.7
휨벽	0.7	1.0	휨벽	0.7	1.0
전단기둥 전단벽 끼움조적벽체	0.7	_	전단기둥 전단벽 끼움조적벽체	0.7	_

^{• :} 기본 목표내진성능(B등급: Good)

표, C)을 계산하고, 층 개개의 수직부재 극한 연성률(연성지표, F)를 계산한다. 다음으로, 그 파괴형식 및 연성지표의 값이 비슷한 것을 최대한 정리하고, 전 수직부재를 최대 3개의 수직부재 그룹으로 하여 연성지표가 작은 순으로 제1 그룹, 제2 그룹, 제3 그룹으로 한다. 이들수직부재 그룹의 강도지표(C)와 연성지표(F)를 조합하여 식(2) 및 식(3)에 나타내는 방법으로 보유성능(E_o)을 산정한다.

(1) 극취성 기둥이 없는 경우 식(2)과 식(3) 중 큰 값을 취하다

$$E_o = \frac{n+1}{n=i} \sqrt{E_I^2 + E_2^2 + E_3^2} \cdot \dots$$
 (2)

$$E_o = \frac{n+1}{n=i} (C_1 + \alpha_2 C_2 + \alpha_3 C_3) \times F_1 \cdot \cdot \cdot \cdot \cdot \cdot \cdot \cdot \cdot (3)$$

여기서, n : 건물층수, I: 대상층의 층수(1층을 1로, 최 상층을 n층으로 함), E_1 : $C_1 \times F_1$, E_2 : $C_2 \times F_2$, E_3 : $C_3 \times F_3$, C_1 : 제1 그룹(F 지표가 가장 작은 그룹)의 C지표, C_2 : 제2 그룹(F 지표가 중간인 그룹)의 C지표, C_3 : 제3 그룹(F 지표가 가장 큰 그룹)의 C지표, F_1 : 제1 그룹의 F 지표, F_2 : 제2 그룹의 F 지표, F_3 : 제3 그룹의 F 지표, G_3 : 제3 그룹의 G_3 : (제1 그룹 종국강도 변형 시 제2 그룹 강도의 합)/(제2 그룹 종국강도의 합), G_3 : (제1 그룹 종국강도 변형 시 제3 그룹 강도의 합)/(제3 그룹 종국강도의 합), G_2 , G_3 는 G_3 은 G_3 은

(2) 극취성 기둥이 있는 경우

극취성 기둥이 있는 경우 보유성능(E_o)는 극취성기둥을 무시하여 식(2) 및 식(3)에 의해 구한 값과, 극취성 기둥을 고려하여 식(3)으로 구한 값 중 가장 큰 값을 취한다. 극취성 기둥을 무시하는 경우에는 연성지표(F)가 두 번째로 작은 연직부재 그룹을 제1 그룹으로 하고 순차적으로 그룹 번호를 올린다.

1) 강도지표의 계산

가. 기본사항

내진성능 상세평가에서는 원칙적으로 보는 충분히 강하다고 가정하여, 수직부재의 수평력에 대한 극한강도로부터 강도지표 C를 산정한다. 각 수직부재의 전단극한강도 Q_{ML} 를 귀하여 양자를 비교

하여 파괴형식을 분류한다〈표 2〉.

나. 부재의 극한강도의 계산

전단극한강도 Q_{su} 및 휨극한강도 M_u 의 계산에는 기존 연구된 적합성이 좋은 식을 사용하는 것으로 한다 $^{2,4\sim7)}$. 이 중, 특히 Q_{su} 에 대해서는 하한에 가까운 값이 얻어지는 식을 이용하는 것으로 하나, 특별한 검토를 하지 않을 때에는 Q_{su} 와 M_u 에 $^{2)}$ 제시된 부재 극한강도 계산식을 사용해도 된다. 콘크리트 강도 및 강재의항복점 강도는 설계기준강도를 사용한다. 단, 예비조사에 의해 현저히 노후화가 관찰되는 경우, 혹은 정밀조사에 의해 재료강도에 관한 자료가 얻어진 경우에는 실제의 값을 사용한다.

다. 파괴형식 및 종국시의 전단력의 계산

상기 식(2)에서 계산한 휨강도 및 전단강도를 이용하여 수직부재의 파괴형식 및 그때의 보유전단력을 다음과 같이 구한다.

① 기둥의 경우

휨종국강도 Q_{Mu} 시 전단력을 식(4)에 의해 계산하고, 이것과 전단종국강도 Q_{Su} 을 비교하여 파괴형식과 종국 보유전단력 Q_{Su} 을 구한다.

여기서, $(M_u)_{\psi}$: 주두의 휨종국강도 $(M_u)_{\psi}$: 주각의 휨종국강도 h_0 : 기둥의 내치수

다만, 전단기둥 중, $h_0/D \le 2$ 인 기둥을 극취성 기둥으로 취급한다.

② 벽의 경우

휨종국 강도 시 전단력 $_{w}Q_{Mu}$ 을 식(5)에 의해서 계산하고, 이것과 전단종국강도 $_{w}Q_{su}$ 을 비교하여 파괴형식과 종국보유전단력 $_{w}Q_{u}$ 을 구한다.

$$_{w}Q_{Mu}\langle_{w}Q_{su}$$
인 경우: 휨벽($_{w}Q_{u}=_{w}Q_{Mu}$)
 $_{w}Q_{Mu}\geq_{w}Q_{su}$ 인 경우: 전단벽($_{w}Q_{u}=_{w}Q_{su}$)
 $_{w}Q_{Mu}=2_{w}M_{u}/h_{w}$ (5)

다만, 여러 층에 연속된 벽(1층 벽을 포함)의 최상층의 경우에는 우변의 계수 2를 1로 한다. 여기서, $_{w}M_{u}$ 는 고려 하는 층의 벽 휨종국 강도이고, h_w 는 고려하고 있는 층의 바닥에서부터 그 벽의 최상부까지의 높이이다.

③ 끼움 조적조

기둥, 보 프레임 내에 벽돌 또는 블록을 충진한 벽체를 끼움조적조 벽체로 정의를 하며, 파괴형식은 대국적으로 전단에 의해서 지배되는 것으로 가정한다. 끼움 조적조 벽체의 극한 전단강도 ${}_{m}Q_{su}^{-6.7)}$ 에서 연구된 적합성이 좋은 식을 사용하는 것으로 하나 특별한 검토를 수행하지 않 을 경우에는 〈표 4〉에 나타낸 끼움조적 벽체의 평균전단 응력도를 이용하여 극한 전단강도를 추정해도 좋다.

라, 연직부재의 그룹핑

파괴형식에 따라 구해지는 연성지표(F)(2) 연성지표 의 계산' 참조)의 크기에 따라 수직부재를 최대 3종류로 분류하고 F지표가 작은 순으로 제1. 제2. 제3 그룹이라 한다. 이때 다음 사항에 주의한다.

- F치가 근사한 것은 될 수 있는 대로 동일그룹으로 넣고, E_a가 크게 되도록 그룹의 수를 3 이하로 한다. 이 경우 그룹의 F지표는 그룹 부재중 가장 작은 F값 을 사용하다
- 극취성 기둥은 독립시켜 그룹핑 한다.
- 마. 강도지표의 산출

각 그룹의 강도지표 는 식(6)에 의해서 계산한다.

 $C_i = (i, 그룹에 속한 수직부재의 극한보유 전단력의$

표 4. 끼움조적조의 평균전단응력도

종류	전단응력도 및 단면적	종류	전단응력도 및 단면적
양측에 기둥이 있는 조적 채움벽	RC $\frac{1}{2}$ RC $\frac{1}$ RC $\frac{1}{2}$ RC $\frac{1}{2}$ RC $\frac{1}{2}$ RC $\frac{1}{2}$ RC	한쪽만 기둥이 있는 조적	RC RC RC RC アンド RC M RC RC RC アンド RC アンド RC アンド RC アンド RC アンド アンド アンド RC アンド
기둥이 없는 조적 채움벽	$\begin{array}{c c} & & & & \\ & & & & \\ & & & & \\ & & & & $	채움벽	RC y RC y $t_{lw} = t_{lw} + t_{lw}$ $t_{lw} = t_{lw} + t_{lw}$ $t_{bw} = 0.2(2)$, $a_{bw} = t \cdot L_w$

여기서. ΣW는 그 충보다 위의 건물 전 중량으로, 건 물자중에 지진용 적재하증을 합한 것으로써, 증량(W) 을 계산을 하지 않은 경우에는 바닥면적당 단위중량 w = 10 kPa(1,000 kgf/m²)을 사용하여 건물 전 중량을 계산해도 좋다.

2) 연성지표의 계산

내진성능 상세평가의 연성지표는 〈표 2〉의 분류에 근 거하여 〈표 5〉에 나타내는 값을 사용한다. 다만, 연성능 력이 있는 휨 항복이 선행하는 휨 기둥 및 휨 벽체에 대 해서는 식(7) 및 식(10)에 의해서 계산 하며, 날개벽을 가 지는 기둥은 특별한 검토 하지 않을 경우, F=1.0로 할 수가 있다. 또한, 끼움 조적조 벽체는 특별한 검토를 하 지 않으면, F = 1.0으로 가정한다.

① 힘 기둥
$$F = \emptyset \sqrt{2\mu - 1} \cdot \dots (7)$$

여기서. ॥ : 휨 기둥의 종국연성율

$$\emptyset: \frac{1}{0.75(1+0.05\mu)}$$

식(7)의 휨 기둥의 종국연성율(u)은 식(8)에 의해 계산 한다. 다만, 다음에 기술하는 어느 한 조건에 해당하는 경 우에는 μ의 값에 관계없이 연성지표 F를 1.0으로 한다.

$$\mu = \mu_0 - k_1 - k_2 [1 \le \mu \le 5] \cdot \dots (8)$$

여기서,
$$\mu_0 = 10\left(\frac{cQ_{su}}{cQ_{Mu}} - 1\right)$$

k,=2.0(다만, 띠철근간격이 주근지름의 8배 이하인 경우는 ()로 해도 좋다.)

$$k_2 = 30\left(\frac{cTMu}{f_{ck}} - 1\right) \ge 0$$

표 5. 상세평가용 연성지표 F

수직부재	인성지표 F	참조
휨기둥	1.27 ~ 3.2*	식(4.6)
휨벽	1.0 ~ 2.0	식(4.9) 및 식(4.9)
전단기둥	1.0	_
전단벽	1.0	_
끼움조적 벽체	1.0	_
극취성기둥	0.8	_

주* 경우에 따라 1.0이 되는 경우가 있다.

 $_{c}Q_{su}$: 기둥의 종국 전단 강도 $_{c}Q_{M}$: 기둥의 휨종국 강도시 전단력 $_{cTMu}=Q_{Mu}/(b\cdot j),\ b$: 기둥폭 $_{fck}$: 콘크리트 압축강도

연성지표 F를 1.0으로 하는 조건은 다음과 같다.

$$N_s/\left(bDf_{ck}\right)$$
〉 $0.4(N_s$ 는 지진 시 축방향력) c_{TMu}/f_{ck} 〉 0.2 P_t 〉 $1\%(P_t$ 는 인장철근비) $h_o/D \le 2.0(h_o$ 는 기둥 내치수 높이) ② 휨 벽

$$\frac{{}_{\scriptscriptstyle w}Q_{\scriptscriptstyle Su}}{{}_{\scriptscriptstyle w}Q_{\scriptscriptstyle Mu}}$$
 \leq 1.2의 경우: F=1.0 ······· (9)

중간은 직선보간

$$\frac{{}_{w}Q_{su}}{{}_{w}Q_{Mu}} \le 1.3$$
의 경우: $F = 2.0 \cdots (10)$

여기서, $_{w}Q_{su}$ 는 벽의 종국 전단강도, $_{w}Q_{Mu}$ 는 벽의 휨 종국 강도시 전단력

3.4 연성율별 지진가속도 수준의 산정

식(6)에 의해서 계산한 극한강도지표를 나절의 연성지표 별로 $\langle \Xi 6 \rangle$ 과 같이 전단(C_{su}) 및 휨파괴형(C_{fp}) 부재의 극한강도로 분류한다. 전단파괴형 부재의 극한강도(C_{su}), 휨파괴형 부재의 극한강도(C_{su}), 휨파괴형 부재의 극한강도(C_{su}), 염파괴형 부재의 극한강도(C_{su}), 연성율(μ_f) 및 지진가속도(α)의 역학적 관계를 비선형 요구내력스펙트럼 결과에 근거하여 수식화 한 식(11)을 바탕으로 특정 연성율(μ_f =0.3, μ_f =0.6, μ_f =1, μ_f =2 및 μ_f =4)별 지진가속도 수준을 계산한다.

$$\mu_{f=0,3} \colon 0.3 = \frac{0.08}{1.03} \alpha^{-0.97} [C_{f_{2}} + 1.9\alpha(\alpha - 0.005)^{-0.7} C_{su}]$$

$$(11-a)$$

$$\mu_{f=0.6} : 0.6 = \frac{0.24}{1.1} \alpha^{-0.99} [C_{fb} + 1.54 \alpha (\alpha - 0.017)^{-0.6} C_{su}]$$

$$(11-b)$$

$$\mu_{f=1,0}: 1.0 = \frac{0.65}{1.1} \alpha^{-0.9} [C_{fr} + 1.02\alpha(\alpha - 0.007)^{-0.58}]$$

$$C_{su} + 0.008\alpha(\alpha + 0.003)^{-3} C_{su}^{2}] \cdots (11-c)$$

$$\mu_{f=2.0} \colon 2.0 = \frac{1.7}{1.1} \alpha^{-1.12} [C_{fy} + 0.7\alpha^{2} (\alpha - 0.007)^{-0.96}]$$

$$C_{su} + 0.12\alpha (\alpha - 0.011)^{-1.7} C_{su}^{2}] \dots \dots \dots \dots \dots (11-d)$$

$$\begin{split} &\mu_{f=\,4.0} \colon 4.0 = \frac{4.1}{1.1} \;\; \alpha^{-1.23} [\textit{C}_{f\!\!\textit{y}} + 0.018\alpha^2 (\alpha - 0.001)^{-1.1} \\ &\textit{C}_{su} + 0.4\alpha (\alpha - 0.017)^{-1.16} \textit{C}_{su}^2 \right] \cdot \quad (11-e) \end{split}$$

3.5 연성율별 내진성능저감계수를 고려한 잔존내진성능 산정

3.4절에서 계산한 특정 연성율 단계, 즉 μ_f = 0.3, μ_f = 0.6, μ_f = 1, μ_f = 2 및 μ_f = 4 단계의 잔존 내진성능 (R)을 \langle 표 $7\rangle$ 및 식(12)를 이용하여 계산한다. 본 지침에 서는 잔존내진성능을 식(12)에 나타낸 지진피해 전 · 후의 보유성능(E_o 및 $_DE_o$)의 비율(내진성능 잔존율, RSC)로 정의를 한다⁸⁾. 식(12)의 내진성능 저감계수를 나타내며, 전단 및 휨파괴형 부재의 손상정도를 지진에너지 흡수능력을 이용하여 제안된 계수이다 \langle 표 $8\rangle$ 8).

$$RSC = \frac{{}_{D}E_{o}(=\eta E_{o})}{E_{o}} \times 100(\%) \cdot \dots (12)$$

여기서, E_a : 지진피해 전의 보유성능

 $_DE_o$: 지진피해 후의 보유성능(= $\eta \cdot E_o$) η : 내진성능 저감계수

표 6. 전단(C_{∞}) 및 휨파괴형(C_{δ}) 부재의 종국강도 분류

종국강도 분류	종국강도 값			
전단파괴형 부재의 종국강도(C_{su})	C_{su} = 연성지표 F 가 1 이하인 경우의 강도지표의 합 ΣC			
휨파괴형 부재의 종국강도(C_{f_0})	$C_{\mathfrak{H}}$ = 연성지표 F 가 1을 초과한 경우의 강도지표의 합 $\sum C$			

표 7. 연성율별 내진성능저감계수를 고려한 잔존내진성능의 계산법

특정 연성율	연성율별 지진가 속도 수준 (제3.4절)	보유 성능 (3.3절)	전단 및 휨파괴형 부재의 손상도〈표 8〉		휨파괴형 내진성능 부재의 저감계수(ŋ)		지진 피해 후의 보유 성능	잔존 내진 성능
μ_f	α(g)	E_0	Shear	Flexural	Shear	Flexural	$_{D}\!E_{0}$	RSC (%)
0,3	0		III	I	0,3	0,95	0	0
0.6	0		IV	I	0	0.95	0	0
1	0	0	IV	П	0	0.75	0	0
2	0		IV	III	0	0.5	0	0
4	0		IV	IV	0	0.1	0	0

^{○:}계산 값

표 8. 부재의 내진성능 저감계수(n)8)

지진손상도	전단파괴형 기둥	휨파괴형 기둥	전단벽
I	0.95	0.95	0.95
II	0.6	0.75	0.6
Ш	0.3	0.5	0.3
IV	0	0.1	0
V	0	0	0

주) 내진성능 저감계수는 부재의 실험연구를 바탕으로 유도한 것으로써, 부재의 내력-변형관계곡 선을 이상회하여 부재가 소산한 지진에너지와 잔존에너지 흡수능력을 이용하여 설정한 계수임

3.6 건물의 지진피해도 및 내진성능 등급 결정

3.5절에서 계산한 잔존 내진성능(RSC)에 의한 지진피 해도 및 내진성능 등급을 〈표 9〉와 같이 결정하며. 최종 적으로 〈표 10〉과 같이 내진성능을 판정한다.

표 9. 내진성능 상세평가 결과와 내진등급과의 관계

피해구분	성능수준	잔존 내진성능 (RSC)	내진성능 등급 2400년 재현주기 2/3			
경미한 피해	OP	RSC ≥ 95	А			
소규모 피해	Ю	80 ≤ RSC ⟨ 95	A			
중규모 피해	DCR	70 ≤ RSC (80	В			
	LS 60	60 ≤ RSC ⟨ 70	D			
다그 디 피는	LSR	50 ≤ RSC (60	С			
대규모 피해	CP	20 ≤ RSC (50	D			
붕괴	С	10 ≤ RSC ⟨ 20	F			
		0 ≤ RSC (10				

표 10. 내진성능평가에 의한 구조물의 내진성능 판정법

<u>• 10.</u> 1100001101 10 1 121 11000 000							
등급부호	지진 재현주기 별 성능수준 2400년 2/3	예비평가	상세평가	조치			
A등급	IO 이하	OK	OK	• 일상적인 유지관리			
B 등급	DCR	목표 수준에 의해서	목표 수준에 의해서 내진보강 여부 결정	• 목표성능이 인명안전(LS, B등급)일 경우: 간략한 보수나 보강에 의해 기능 수행			
	LS	상세평가 실시 여부 결정		• 목표성능이 즉시거주(IO, A등급)일 경우 : 목표성능 에 준하여 내진보수 및 나 진보강에 의해 기능수행			
C 등급	LSR	상세 평가 실시	보강	• 내진보강설계에 의한 보 강을 실시하여 내진성능 을 향상			
D 등급	CP	상세 평가 실시	보강	• 내진보강설계에 의한 보 강을 실시하여 내진성능 을 향상			
E 딞	С	상세 평가 실시	보강/ 철거판단	• 경제성분석에 의해 전체 구조의 성능개량이나 철 거를 판단하고, 성능개량 판정 시에는 내진보강설 계에 의한 구조의 성능을 전면적으로 개량하여 내 진성능을 향상			

4. 맺음말

학교시설 내진성능 평가 및 내진보강 가이드라인의 상세 내진성능 평가법은 비선형 지진응답해석을 이용한 유도된 전단 및 휨 파괴형 부재가 혼합된 RC 학교 건물의 비선형 요구내력스펙트럼을 수식화하여 특정 연성률 별로 지진입 력수준과 내진성능잔존률을 산정하고 구조물의 지진손상정 도를 정량적으로 평가하는 내진성능평가법이다. 상세평가 법을 이용하면 내진보강의 여부 판정이 가능하고, 내진보강 을 위한 필요 내진보강량을 간편하게 추정이 가능하다.

담당 편집위원: 최세진(포항산업과학연구원) csj2378@hanmail.net

참고문헌

- 1, Federal Emergency Management Agency FEMA-356 · Prestandard and Commentary for the Seismic Rehabilitation of Buildings, Washington, D.C., 2000.
- 2. (財)日本建築防災協会「既存コンクリート造建築物の耐震 診断基準. 付解説」,新洋社, 東京, 1977(1990年, 2001年 改訂), 140 pp.
- 3. 교육과학기술부「학교시설 내진성능 평가 및 내진보강가이드 라인」, 2011년 6월(2012년 2월 개정).
- 4. Federal Emergency Management Agency FEMA-356 · Prestandard and Commentary for the Seismic Rehabilitation of Buildings, Washington, D.C., 2000.
- 5. Building Code Requirements for Structural Concrete(ACI 318-08) and Commentary,, American Concrete Institute Committee 318, 2008.
- 6. T. Pauley and M.J.N., Priestley $\ensuremath{\,^{\Gamma}} \ensuremath{\text{Seismic}}$ Design of Reinforced Concrete and Masonry Buildings, John Wiley & Sons, INC. 1992.
- 7. Federal Emergency Management Agency $^{\mbox{\scriptsize FEMA}}-306 \cdot$ Evaluation of Earthquake Damaged Concrete and Masonry Wall Buildings, Washington. D.C., 1998.
- 8. (財)日本建築防災協会「震災建築物の被災度區分判定基準お よび 復舊技術指針」, 三榮社, 東京, 2001, 360 pp.

이강석 교수는 일본 도쿄대 건축학과 에서 지역특색을 고려한 지진재해예측에 관한 연구로 박사학위를 취득한 후 도쿄 대 생산기술연구소와 미국 NIST(National Institute of Standards and Technology) 에서 연구원을 마쳐 2007년부터 전남대 학교 건축학부 교수로 재직하고 있다. 주 관심 연구 분야는 철근콘크리트 건물의 내진설계, 내진성능 평가, 내진보강법 개 발 및 최적알고리즘을 이용한 최적구조 설계이며, 우리학회 내진설계위원회 위 원장 및 보강보강위원회 위원장을 역임 하였다

kslnist@chonnam.ac.kr