DOI QR코드

DOI QR Code

Research Trend and Analysis of Altitude and Endurance for Fuel Cell Unmanned Aerial Vehicles

연료전지 무인항공기의 고도와 체공시간에 대한 특성 분석 및 최신 연구동향

  • Cho, Seonghyun (Fuel Cell Research Center, Korea Institute of Energy Research) ;
  • Kim, Minjin (Fuel Cell Research Center, Korea Institute of Energy Research) ;
  • Son, Youngjun (Fuel Cell Research Center, Korea Institute of Energy Research) ;
  • Yang, Taehyun (Fuel Cell Research Center, Korea Institute of Energy Research)
  • 조성현 (한국에너지기술연구원 연료전지연구실) ;
  • 김민진 (한국에너지기술연구원 연료전지연구실) ;
  • 손영준 (한국에너지기술연구원 연료전지연구실) ;
  • 양태현 (한국에너지기술연구원 연료전지연구실)
  • Received : 2014.07.01
  • Accepted : 2014.08.31
  • Published : 2014.08.30

Abstract

Unmanned aerial vehicles (UAVs) have been applied to not only military missions like surveillance and reconnaissance but also commercial missions like meteorological observation, aerial photograph, communication relay, internet network build and disaster observation. Fuel cells make UAVs eco-friendly by using hydrogen. Proton exchange membrane fuel cells (PEMFCs) show low operation temperature, high efficiency, low noise and high energy density and those characterisitcs are well fitted with UAVs. Thus Fuel cell based UAVs have been actively developed in the world. Recently, fuel cell UAVs have started to develope for high altitude UAVs because target altitude of UAVs is expanded upto stratosphere altitude. Long endurance of UAVs is essential to improve effects of the missions. Improvement of UAV endurance time could be fulfilled by developing a hydrogen fuel storage system with high energy density and reducing the weight of UAVs. In this paper, research trend and analysis of fuel cell UAVs are introduced in terms of their altitude and endurance time and then the prospect of fuel cell UAVs are shown.

Keywords

References

  1. R. P. O'Hayre, S. W. Cha, W. Colella and F. B. Prinz, "Fuel Cell Fundamentals", Hanteemedia press, Korea, 2008, pp. 1-18.
  2. F. Barbir, "PEM Fuel Cells - Theory and Practice -", Bookshill press, Korea, 2008, pp. 1-16.
  3. K. B. Kim, I. Y. Yang, N. Y. Kim and B. H. Jang, "Technical Trends for HALE UAV Propulsion System", Current Industrial and Technological Trends in Aerospace, Vol. 9, No. 2, 2011, pp. 39-48.
  4. T. H. Bradley, "Modeling Design and Energy Management of Fuel Cell Systems for Aircraft", Georgia Institute of Technology press, USA, 2008, pp. 1-5, pp. 8-14, pp. 17-22.
  5. S. A. Cmbone, K. J. Krieg, P. Pace and L. Wells, "Unmanned Aircraft Systems Roadmap 2005 - 2030", Office of the Secretary of Defense press, USA, 2005, pp. 1-2, p. 29, pp. 52-54, p. 69, p. A-2, p. D-5.
  6. K. B. Kim, "Technical Trends for Fuel Cell Aircraft", Current Industrial and Technological Trends in Aerospace, Vol. 7, No. 2, 2009, pp. 95-105.
  7. M. Dudek, P. Tomczyk, P. Wygonik, M. Korkosz, P. Bogusz and B. Lis, "Hybrid Fuel Cell - Battery System as a Main Power Unit for Small Unmanned Aerial Vehicles (UAV)", International Journal of Electrochemical Science, Vol. 8, 2013, pp. 8442-8463.
  8. T. G. Kim and S. J. Kwon, "Design and Development of a Fuel Cell-powered Small Unmanned Aircraft", International Journal of Hydrogen Energy, Vol. 37, 2012, pp. 615-622. https://doi.org/10.1016/j.ijhydene.2011.09.051
  9. K. H. Kim, T. G. Kim, K. S. Lee and S. J. Kwon, "Fuel Cell System with Sodium Borohydride as Hydrogen Source for Unmanned Aerial Vehicles", Journal of Power Sources, Vol. 196, 2011, pp. 9069-9075. https://doi.org/10.1016/j.jpowsour.2011.01.038
  10. C. N. Yang and Y. D. Kim, "Development and Demonstration of 150W Fuel Cell Propulsion System for Unmanned Aerial Vehicle (UAV)", Transactions of the Korean Hydrogen and New Energy Society, Vol. 23, No. 4, 2012, pp. 300-309. https://doi.org/10.7316/KHNES.2012.23.4.300
  11. M. K. Furrutter and J. Meyer, "Small Fuel Cell Powering an Unmanned Aerial Vehicle", IEEE AFRICON, 2009, pp. 1-6.
  12. T. A. Ward and N. B. Jenal, "Design and Initial Flight Tests of a Hydrogen Fuel Cell Powered Unmanned Air Vehicle (UAV)", ECS Transactions, Vol. 26, No. 1, 2010, pp. 433-444.
  13. G. Correa, F. Borello and M. Santarelli, "Sensitivity Analysis of Temperature Uncertainty in an Aircraft PEM Fuel Cell", International Journal of Hydrogen Energy, Vol. 36, 2011, pp. 14745-14758. https://doi.org/10.1016/j.ijhydene.2011.08.036
  14. M. C. Williams, "Fuel Cell Handbook", Seventh Edition, EG&G Technical Services Inc.,USA, 2004, pp. 1-34.
  15. G. Hoogers, E. Chen, D. Thompsett, M. Hogarth, R. Stone and A. Bauen, "Fuel Cell Technology Handbook", CRC press, USA, 2003, pp. 1-45.
  16. "BlueBird, Horizon unveil first commercial fuel cell UAV", Fuel Cell Bulletin, 2009, p. 6.
  17. "Elbit completes UAS test flight with Horizon Aeropak fuel cell", Fuel Cells Bulletin, 2011, p. 5.
  18. "Insitu flies hydrogen fuel cell powered ScanEagle UAV", Fuel Cells Bulletin, 2012, p. 5.
  19. "US Navy launches fuel cell powered UAV from underwater sub", Fuel Cells Bulletin, 2014, p. 4.
  20. K. E. Swider-Lyons, J. A. MacKrell, J. A. Rodgers, G. S. Page, M. Schuette and R. O. Stroman, "Hydrogen Fuel Cell Propulsion for Long Endurance Small UAVs", AIAA Centennial of Naval Aviation Forum "100 Years of Achievement and Progress". American Institute of Aeronautics and Astronautics, 2011, pp. 1-8
  21. K. E. Swider-Lyons, R. Stroman, J. Rodgers, D. Edwards and J. Mackrell, "Liquid Hydrogen Fuel System for Small Unmanned Air Vehicles", 51st AIAA Aerospace Sciences Meeting including the New Horizons Forum and Aerospace Exposition. American Institute of Aeronautics and Astronautics, 2013, pp. 1-6.
  22. "Business Wire", http://www.businesswire.com/news/home/20101208005565/en/Elbit-Systems-Successfully-Completes-Skylark-I-LE-UAS#.U64v62CKCpo, 2010.
  23. N. Mckeegan, "Gizmag", http://www.gizmag.com/aerovironment-puma-hybrid-fuel-cell-uav-flight-record/8948/, 2008.
  24. "Fuel Cell Today", http://www.fuelcelltoday.com/news-archive/2012/april/scaneagle-unmanned-aircraft-flies-with-hydrogen-fuel-cell, 2012.
  25. D. Thompson, "Naval Research Laboratory", http://www.nrl.navy.mil/media/news-releases/2009/nrls-xfc-uas-achieves-flight-endurance-milestone, 2009.
  26. C. Howard, "Intelligent-Aerospace", http://www.intelligent-aerospace.com/articles/2013/05/NRL-fuel-cell-UAV.html, 2013.
  27. J. E. Seo, Y. J. Kim, Y. M. Kim, K. B. Kim, J. H. Lee, D. H. Lee, Y. C. Kim, S. J. Shin, D. M. Kim, S. Y. Kim, T. G. Kim, C. W. Yoon and S. W. Nam, "Portable Ammonia-borane-based $H_2$ Power-pack for Unmanned Aerial Vehicles", Journal of Power Sources, Vol. 254, 2014, pp. 329-337. https://doi.org/10.1016/j.jpowsour.2013.11.112
  28. B. H. Lee, P. M. Park, K. B. Kim and S. J. Kwon, "The Flight Test and Power Simulations of an UAV Powered by Solar Cells, a Fuel Cell and Batteries", Journal of Mechanical Science and Technology, Vol. 28, No. 1, 2014, pp. 399-405. https://doi.org/10.1007/s12206-013-0936-7
  29. Y. G. Lee, S. J. Hwang, S. G. Kim, C. W. Kim, S. M. Ahn and D. S. Lee, "Development of an Electrically Powered HALE UAV", Journal of The Korean Society for Aeronautical & Space Sciences, Vol. 4, 2013, pp. 1097-1100.
  30. H. H. Choi, "High Altitude Long Endurance UAV", Defense & Technology, Vol. 2013, No. 2, 2013, pp. 14-27.
  31. M. K. Chae, D. C. Kang, "Chosun Biz", http://biz.chosun.com/site/data/html_dir/2014/03/06/2014030600294.html, 2014.
  32. B. H. Lee, P. M. Park, C. T. Kim, S. Y. Kim, S. S. Yang and S. M. Ahn, "A Electric Power Source Modeling and Simulation for Electric Propulsion Systems of a Fuel Cell Powered Small UAV", Journal of The Korean Society for Aeronautical & Space Sciences, Vol. 39, No. 10, 2011, pp. 959-965. https://doi.org/10.5139/JKSAS.2011.39.10.959
  33. N. P. Kwak, "Hankyoreh News", http://www.hani.co.kr/arti/economy/it/630279.html, 2014.
  34. "iHLS", http://i-hls.com/2013/08/solar-hale-drones-turn-into-atmospheric-satellites/, 2013.
  35. T. G. Kim, H. C. Shim and S. J. Kwon, "Development of Fuel Cell Power System for Unmanned Aerial Vehicle", Journal of The Korean Society of Propulsion Engineers, Vol. 4, 2007, pp. 87-90.
  36. T. G. Kim, H. C. Shim and S. J. Kwon, "Design and Performance Tests of a Fuel Cell System for a Power Source of UAV", Journal of The Korea Institute of Military Science and Technology, 2007, pp. 1-4.
  37. J. H. Lee, H. J. Lee, B. S. Ahn and C. S. Kim, "Thermal Decomposition of Ammonia Borane for $H_2$ Release", Transactions of the Korean Hydrogen and New Energy Society, Vol. 19, No. 4, 2008, pp. 299-304.
  38. A. Gutowska, L. Li, Y. S. Shin, C. M. Wang, X. S. Li, J. C. Linehan, R. S. Smith, B. D. Kay, B. Schmid, W. Shaw, M. Gutowski and T. Autrey, "Nanoscaffold Mediates Hydrogen Release and the Reactivity of Ammonia Borane", Angew. Chem. Int. Ed., Vol. 44, 2005, pp. 3578-3582. https://doi.org/10.1002/anie.200462602
  39. J. W. Pratt, J. Brouwer and G. S. Samuelsen, "Performance of Proton Exchange Membrane Fuel Cell at High-Altitude Conditions", Journal of Propulsion and Power, Vol. 23, No. 2, 2007, pp. 437-444. https://doi.org/10.2514/1.20535
  40. K. H. Choi, "Temperature and Wind Variations in the Lower Stratosphere over the Korea", Journal of The Korean Society for Aeronautical & Space Sciences, Vol. 11, 1997, pp. 730-733.

Cited by

  1. A Feasibility Study for a Stratospheric Long-endurance Hybrid Unmanned Aerial Vehicle using a Regenerative Fuel Cell System vol.7, pp.1, 2016, https://doi.org/10.5229/JECST.2016.7.1.41