DOI QR코드

DOI QR Code

Evaluation of Static and Fatigue Performances of Decks Reinforced with GFRP Rebar for Reinfocement Ratio

GFRP 보강근으로 보강된 바닥판의 보강비에 따른 정적 및 피로성능 평가

  • You, Young-Jun (Structural Engineering Research Division, Korea Institute of Civil Engineering and Building Technology) ;
  • Park, Young-Hwan (Structural Engineering Research Division, Korea Institute of Civil Engineering and Building Technology) ;
  • Choi, Ji-Hun (School of Civil and Environmental Engineering, Yonsei University) ;
  • Kim, Jang-Ho Jay (School of Civil and Environmental Engineering, Yonsei University)
  • 유영준 (한국건설기술연구원 인프라구조연구실) ;
  • 박영환 (한국건설기술연구원 인프라구조연구실) ;
  • 최지훈 (연세대학교 사회환경시스템공학부) ;
  • 김장호 (연세대학교 사회환경시스템공학부)
  • Received : 2014.03.12
  • Accepted : 2014.05.29
  • Published : 2014.08.30

Abstract

The corrosion of steel reinforcement in reinforced concrete bridge decks significantly affects the degradation of the capacity. Due to the advantageous characteristics such as high tensile strength and non-corrosive property, fiber reinforced polymer (FRP) has been gathering much interest from designers and engineers for possible usage as a alternative reinforcement for a steel reinforcing bar. However, its application has not been widespread, because there data for short- and long-term performance data of FRP reinforced concrete members are insufficient. In this paper, seven full-scale decks with dimensions of $4000{\times}3000{\times}240mm$ were prepared and tested to failure in the laboratory. The test parameter was the bottom reinforcement ratio in transverse direction. The decks were subjected to various levels of concentrated cyclic load with a contact area of $577{\times}231mm$ to simulate the vehicle loading of DB-24 truck wheel loads acting on the center span of the deck. It was observed that the glass FRP (GFRP) reinforced deck on a restraint girder is strongly effected to the level of the applied load rather than the bottom reinforcement ratio. The study results showed that the maximum load less than 58% of the maximum static load can be applied to the deck to resist a fatigue load of 2 million cycles. The fatigue life of the GFRP decks from this study showed the lower and higher fatigue performance than that of ordinary steel and CFRP rebar reinforced concrete deck. respectively.

철근의 부식은 철근콘크리트 교량 바닥판의 성능 저하에 큰 요인으로 작용한다. FRP는 비부식성 재료이기 때문에 이를 활용하여 보강근을 개발하려는 노력이 이루어지고 있다. 여러 종류의 FRP 보강근이 개발되었으나 아직 활용 실적은 많지 않은 상황이다. 그 이유로는 FRP 보강 콘크리트 구조물에 대한 단/장기 검증 데이터가 부족하기 때문이다. 이 연구에서는 GFRP 보강 바닥판에 대한 피로성능을 관찰하기 위해서 길이 4000 mm, 폭이 3000 mm, 높이 240 mm인 실제 크기의 교량 바닥판을 도로교설계기준을 준용하여 제작한 후 실험을 실시하였다. 하부 보강비를 변수로 설정하였으며 DB-24 하중이 바닥판 중앙에 집중 작용하는 것으로 실험을 실시하였다. 사용하중의 3.5, 4.5, 5.0배에 해당하는 다양한 하중을 2백 만회 이상 반복 재하하여 GFRP 보강 바닥판의 피로성능을 관찰하였다. 실험 결과 거더가 횡구속된 GFRP 보강 바닥판의 최대성능은 보강근비에는 민감하지 않았고, 피로성능은 보강비보다는 적용하중의 크기에 민감하며, 바닥판이 200만회 이상 반복재하에 저항하기 위해서는 재하되는 집중하중의 크기는 최대하중의 58% 수준 이하이어야 하며, 이 연구의 실험 대상 GFRP 보강 바닥판의 피로수명은 철근 콘크리트 바닥판의 수명 예측값보다는 다소 낮은 값을 나타내었고 FRP 보강 콘크리트 바닥판의 기존 예측값보다는 높은 값을 나타내었다.

Keywords

References

  1. Benmokrane, B., El-Salakawy, E., El-Ragaby, A., and Lackey, T., "Designing and testing of concrete bridge decks reinforced with glass FRP bars," Journal of Bridge Engineering, ASCE, Vol. 11, No. 2, 2006, pp. 217-229. (doi: http: //dx.doi.org/10.1061/(ASCE)1084-0702(2006)11:2(217))
  2. ACI 440.1R-06, Guide for the Design and Construction of Concrete Reinforced with FRP Bars, Farmington Hills (MI, USA), American Concrete Institute, 2006.
  3. CSA S806-02, Design and Construction of Building Components with Fiber Reinforced Polymers, Toronto (Ont., Canada), Canadian Standards Association, 2002.
  4. Japan Society of Civil Engineers, Recommendation for Design and Construction of Concrete Structures Using Continuous Fiber Reinforcing Materials, Concrete Engineering Series 23, Tokyo, Japan, 1997.
  5. Sim, J. S., Oh, H. S., Ju, M. K., and Lim, J. H., "New Suggestion of Effective Moment of Inertia for Beams Reinforced with the Deformed GFRP Rebar," Journal of the Korea Concrete Institute, Vol. 20, No. 2, 2008, p. 185. https://doi.org/10.4334/JKCI.2008.20.2.185
  6. Seo, D. W., Han, B. S., and Shin, S. W., "Behaviour of One-Way Concrete Slabs Reinforced with Fiber Reinforced Polymer (FRP) Bars," Journal of the Korea Concrete Institute, Vol. 19, No. 6, 2007, pp. 763-771. https://doi.org/10.4334/JKCI.2007.19.6.763
  7. El-Ragaby, A. El-Salakawy, E., and Benmokrane, B., "Fatigue analysis of concrete bridge deck slabs reinforced with E-glass/vinyl ester FRP reinforcing bars," Composites Part B: engineering, 38, 2007, p. 703. (doi: http://dx.doi. org/10.1016/j.compositesb.2006.07.012)
  8. Youn, S. G. and Chang, S. P., "Behavior of Composite Bridge Decks Subjected to Static and Fatigue Loading," Structural Journal, ACI Technical paper, Title No. 95-S23, 1998, pp. 249-258. (doi: http://dx.doi.org/10.14359/543)
  9. John, C. G., Jubum, K., James, H. W., Ned, H. B., and Richard, E. K., "Punching-Shear Behavior of Bridge Decks under Fatigue Loading," Structural Journal, ACI, Title No. 99-S27, 2002, p. 257. (doi: http://dx.doi.org/ 10.14359/11909)
  10. Susan, E. T., Barry, R., David, J. C., and Jim, K., "Serviceability of Bridge Deck Slabs with Arching Action", Structural Journal, ACI, Title no.104-S05, 2007, p.39. (doi: http://dx.doi.org/10.14359/18431)
  11. Matsui, S., Tokai, D., Higashiyama, H., and Mizukoshi, M., "Fatigue Durability of Fiber Reinforced Concrete Decks Under Running Wheel Load," Proceedings 3rd International Conference on Concrete Under Severe Conditions, Ed. N. Banthia, Vancouver, Canada, 2001, pp. 982-991.
  12. Klowak, C., Memon, A., and Mufti, A., "Static and fatigue investigation of second generation steel-free bridge decks," Cement & Concrete Composites, ScienceDirect, Elsevier, Vol. 28, No. 10, 2006, pp. 890-897. (doi: http://dx.doi.org/10.1016/j.cemconcomp.2006.07.019)
  13. El-Ragaby, A., El-Salakawy, E., and Benmokrane, B., "Fatigue Life Evaluation of Concrete Bridge Deck Slabs Reinforced with Glass FRP Composite Bars," Journal of Composites for Construction, ASCE, Vol. 11, No. 3, 2007, pp. 258-268. (doi: http://dx.doi.org/10.1061/(ASCE) 1090-0268(2007)11:3(258)
  14. KICT, Design and construction technology for concrete structures using advanced composite materials (in Korean), Final report submitted to the Korea Research Council of Public Science and Technology, Korea Institute of Construction Technology, 2008.
  15. Ministry of Construction & Transportation, Korean highway bridge design code, 2005.
  16. CAN/CSA-S6-00, Canadian Highway Bridge Design Code, Canadian Standard Association, Rexdale, Ontario, Canada, 2000, 346 pp.
  17. CAN/CSA-S6-06, Canadian Highway Bridge Design Code, Canadian Standard Association, Rexdale, Ontario, Canada, 2006, p. 714.
  18. You, Y. J., Park, Y. H., Park, J. S., and Kim, H. Y., "Experimental study on bridge decks reinforced with GFRP rebars," 4th International Conference on FRP Composites in Civil Engineering (CICE2008), Zurich, Switzerland, 22-24 July, 2008, pp. 1-6.