DOI QR코드

DOI QR Code

Experimental Study on Combined Failure Damage of Bi-directional Prestressed Concrete Panel under Impact-Fire Loading

충돌 후 화재에 대한 이방향 프리스트레스트 콘크리트 패널부재의 복합 파괴손상에 관한 실험적 연구

  • Yi, Na-Hyun (Dept. of Civil and Environmental System Engineering, Yonsei University) ;
  • Lee, Sang-Won (Dept. of Civil and Environmental System Engineering, Yonsei University) ;
  • Choi, Seung-Jai (Dept. of Civil and Environmental System Engineering, Yonsei University) ;
  • Kim, Jang-Ho Jay (Dept. of Civil and Environmental System Engineering, Yonsei University)
  • 이나현 (연세대학교 사회환경시스템공학부) ;
  • 이상원 (연세대학교 사회환경시스템공학부) ;
  • 최승재 (연세대학교 사회환경시스템공학부) ;
  • 김장호 (연세대학교 사회환경시스템공학부)
  • Received : 2013.12.23
  • Accepted : 2014.03.26
  • Published : 2014.08.30

Abstract

Since the World Trade Center and Pentagon attacks in 2001, terror, military attack, or man-made disaster caused impact, explosion, and fire accident have frequently occured on civil infrastructures. However, structural behavior researches on major Prestressed Concrete (PSC) infrastructures such as bridges, tunnels, Prestressed Concrete Containment Vessel (PCCVs), and LNG tanks under extreme loading are significantly lacking. Especially, researches on possible secondary fire scenarios after terror, bombing, collision of vehicles and vessels on concrete structures have not been performed domestically where most of the past researches related to extreme loadings on structures focused on an independent isolated extreme loading scenario. Due to the outcry of public concerns and anxiety of potential terrorist attacks on major infrastructures and structures, a study is urgently needed at this time. Therefore, in this study, the bi-directional prestressed concrete $1400{\times}1000{\times}300mm$ panels applied with 430 kN prestressing force using unbonded prestressing thread bars were experimentally evaluated under impact, fire, and impact-fire combined loadings. Due to test site restrictions, impact tests were performed with 14 kN impactor with drop heights of 10m and 3.5 m to evaluate impact resistance capacity. Also, fire and impact-fire combined loading were tested using RABT fire loading curve. The measured residual strength capacities of PSC and RC specimens applied with impact, fire, impact-fire combined loadings were compared with the residual strength capacity of undamaged PSC and RC specimens for evaluation. The study results can be used as basic research data for related research areas such as protective design and numerical simulation under extreme loading scenarios.

세계적으로 충돌, 테러, 화재, 폭발 등의 극한하중에 의한 테러가 빈번하게 발생하고 있으나, 실제 극한하중에 대한 사회주요기반시설구조물의 방호 및 방재개념이 설계에 반영되고 있지 못하는 실정이다. 특히, 교량, 터널, 원전격납구조물, 가스탱크 등의 주요 시설물에 적용되고 있는 프리스트레스트 콘크리트(PSC) 구조물에 대한 극한하중 연구는 미흡한 실정이다. 또한, 테러, 폭격, 차량 및 선박 등의 충돌 사고 이후 2차적으로 발생 가능한 화재에 대한 사회적 관심 및 불안감이 고조됨에 따라, 단순한 단일 극한하중이 아닌 복합손상 시나리오에 대한 구조물의 검토가 필요하다. 그러므로, 본 연구에서는 $1,400{\times}1,000{\times}300mm$ 부재의 양방향에 430kN의 긴장력을 준 비부착 프리스트르레스트 콘크리트 패널부재를 제작하여, 충돌, 화재 하중 뿐만 아니라, 충돌 후 화재의 복합손상을 실험적으로 검토하였다. 이방향 프리스트레스트 콘크리트의 충돌저항성능은 실험조건에 맞춰 14kN의 추를 10m, 3.5m의 높이의 실험으로 구성하였으며, 화재저항성능은 5분 이내에 $1,200^{\circ}C$의 화재하중을 가할 수 있는 RABT 화재 시나리오를 적용하여 극한저항성능을 검토하였다. 또한 충돌, 화재, 충돌 후 화재에 의해 손상을 받은 PSC 및 RC 시편의 잔류구조성능을 손상 받지 않은 시편들과 비교 검토하였다. 본 실험은 향후 국내외 프리스트레스트 콘크리트에 대한 충돌 및 화재해석 및 방호설계 등 관련 연구분야의 기초자료가 될 것이라고 판단되는 바이다.

Keywords

References

  1. Jeon, S. J., Lee, Y. S., Kim, Y. J., and Chung, Y. S., "Fire Resistant Capacity of Containment Buildings Subjected to the Postulated Aircraft Crash-induced Fire," Journal of Korean Society of Civil Engineers, Vol. 25, No. 6A, 2005, pp. 1177-1187 (In Korean).
  2. Moon, I. H., Noh, S. H., Lee, S. Y., and Kim, K. J., "Structural Behavior of PSC Reactor Containment Structure under Temperature and Pressure Loading," Journal of Korean Society of Civil Engineers, Vol. 27, No. 6A, 2007, pp. 847-858 (In Korean).
  3. Shin, S. W., Kwon, Y. J., Kim, W. J., Song, H., Shin, Y. S., Yoo, S. H., Lee, S. H., Lee, K. D., Choi, K. H., and Hong, S. G., Fire Safety Design Guidelines of High Strength Concrete Structures, Architectural Institute of Korea, Ki Moon dang, Korea, 2008, pp. 1-50 (In Korean).
  4. Won, J. P., Choi, S. W., Park, C. G., and Park, H. K., "Temperature Distribution of Wet-Mixed High Strength Sprayed Polymer Mortar for Fire Resistance of Tunnel," Journal of Korean Society of Civil Engineers, Vol. 26, No. 4C, 2006, pp. 283-290 (In Korean).
  5. Park, H. G., Won, J. P., Kim, J. H. J, and Lim, Y. M., "Evaluation of Fire-Resistance Performance of Shield Tunnel RC Linings Using Polypropylene Fiber," Journal of Korean Society of Civil Engineers, Vol. 25, No. 3C, 2005, pp. 227-233. (In Korean).
  6. Chang, S. H., Choi, S. W., Kwon, J. W., and Bae, G. J., "Evaluation of Fire-Induced Damage to Structural Members in Tunnels," Journal of Korean Society of Civil Engineers, Vol. 26, No. 3C, 2006, pp. 219-228 (In Korean).
  7. Yi, N. H., Lee, S. W., and Kim, J. H. J, "Experimental Study on Fire-Resistant Characteristics of Bi-Directionally Prestressed Concrete Panel under RABT Fire Scenario," Journal of the Korea Concrete Institute, Vol. 24, No. 6, 2012, pp. 695-703 (In Korean). https://doi.org/10.4334/JKCI.2012.24.6.695
  8. Yi, N. H., Lee, S. W., Lee, S. J., and Kim, J. H. J, "Experimental Evaluation of Bi-directionally Unbonded Prestressed Concrete Panel Impact-Resistance Behavior under Impact Loading," Journal of the Korea Concrete Institute, Vol. 25, No. 5, 2013, pp. 485-496 (In Korean). https://doi.org/10.4334/JKCI.2013.25.5.485
  9. Jeon, S, J., Lee, Y. S., Chung, C. H., and Chung, Y. S., "Dynamic Nonlinear Response of Domestic Nuclear Containment Buildings subjected to Large Aircraft Impact Load," Journal of Korean Society of Civil Engineers, Vol. 25, No. 1A, 2005, pp. 191-200 (In Korean).
  10. Sugano, T., Tsubota, H., Kasai, Y., Koshika N., Ohnuma H., Riesemenn von W. A., Bickel D. C., and Parks M. B., "Local Damage to Reinforced Concrete Structures Caused by Impact of Aircraft Engine Missiles. Part 1. Test Program, Method and Results," Nuclear Engineering and Design, Vol. 140, 1993, pp. 387-405. (doi: http://dx.doi.org/10.1016/0029-5493(93)90120-X)
  11. Sugano, T., Tsubota, H., Kasai, Y., Koshika N., Itoh C., Shirai K., Riesemenn von W. A., Bickel, D. C., and Parks, M. B., "Local Damage to Reinforced Concrete Structures Caused by Impact of Aircraft Engine Missiles. Part 2. Evaluation of Test Results," Nuclear Engineering and Design, Vol. 140, 1993, pp. 407-423. (http://dx.doi. org/10.1016/0029-5493(93)90121-O)
  12. Choi, H., Chung, C. H., Yoo, H. K., and Kim, S. Y., "Effect of Reinforcement Ratio and Impact Velocity on Local Damage of RC Slabs," Journal of Korean Society of Civil Engineers, Vol. 31, No. 4A, 2011, pp. 311-321 (In Korean).
  13. Chung, C. H., Im, C. R., Kim, H. J., and Joo, S. H., "Evaluation of Fire Performance of RC Slabs with Half- Depth Precast Panels," Journal of Korean Society of Civil Engineers, Vol. 30, No. 4A, 2010, pp. 391-398 (In Korean).
  14. Shin, S. S. and Park, T. H., "Analysis of Containment Building Subjected to a Large Aircraft Impact using a Hydrocode," Journal of Korean Society of Civil Engineers, Vol. 31, No. 5A, 2011, pp.369-378 (In Korean).
  15. Abbas, H., Paul, D. K., Godbole, P. N., and Nayak, G. C., "Aircraft Crash upon Outer Containment of Nuclear Power Plant," Nuclear Engineering and Design, Vol. 160, 1996, pp. 13-50. (doi: http://dx.doi.org/ 10.1016/0029- 5493(95)01049-1)
  16. Zineddin, M. Z. and Krauthammer, T., "Dynamic Response and Behavior of Reinforced Concrete Slabs under Impact Loading," International Journal of Impact Engineering, Vol. 34, No. 9, 2007, pp. 1517-1534. (doi: http://dx.doi.org/10.1016/j.ijimpeng.2006.10.012)
  17. John, A. G., "Transient High-Temperature Prestress Relaxation of Unbonded Prestressing Tendons or Use in Concrete Slabs," Thesis for Degree of Master of Science, Queen's University, Kingston Ontario, Canada, 2009, pp.1-45.
  18. Kevin J. N. M., "Post-Fire Assessment of Unbonded Post-Tensioned Concrete Slabs : Strand Deterioration and Prestress Loss," Thesis for Degree of Master of Science, Queen's University, Kingston Ontario, Canada, 2007, pp.14-103.
  19. Kim, J. H. J, Damage Assessment and Design Evaluation of PCCV under Impact or Blast Scenario based on High Fidelity Physics Based Analysis, Final Report for Korea Institute of Energy Technology Evaluation and Planning, Yonsei University, Korea, 2012, pp. 1-114. (In Korean)
  20. Seo, K. S. Protective Engineering, Cheong Moon Gak, Korea, 2005, pp. 10-250. (In Korean)
  21. Yi, N. H., Kim, J. H. J., Han, T. S., Cho, Y. G., and Lee, J. H., "Blast-Resistant Characteristics of Ultra High Strength Concrete and Reactive Powder Concrete," Construction and Building Materials, Vol. 28, No. 1, 2012, pp. 578-584. (doi: http://dx.doi.org/10.1016/ j.conbuildmat.2011.09.014)
  22. Kakogiannis, D., Pascualena, F., Reymen, B., Pyl, L., Ndambi, J. M., Segers, E., Lecompte, D., Vantomme, J., and Krauthammer, T., "Blast Performance of Reinforced Concrete Hollow Core Slabs in Combination with Fire: Numerical and Experimental Assessment," Fire Safety Journal, Vol. 57, 2013, pp.69-82. (doi: http://dx.doi.org/10.1016/j.firesaf.2012.10.027)
  23. Huo, J., Zheng, Q., and Chen, B., "Tests on Impact Behaviour of Micro-Concrete-Filled Steel Tubes at elevated Temperatures up to 400${^{\circ}C}$," Materials and Structures, Vol. 42, pp. 1325-1334, 2009. (doi: 10.1617/s11527-008-9452-0)
  24. Huo, J. S., He, Y. M., Xiao, L. P., and Chen, B. S., "Experimental Study on Dynamic Behaviors of Concrete after Exposure to High Temperatures up to 700${^{\circ}C}$," Material and Structures, Vol. 46, pp. 255-265, 2013. (doi:10.1617/s11527-012-9899-x)