DOI QR코드

DOI QR Code

PCBs의 스크랩으로부터 Au 용출과 회수

The Leaching and Recovery of Au from Scrap of PCBs

  • 유돈상 (조선대학교 에너지자원공학과) ;
  • 박천영 (조선대학교 에너지자원공학과)
  • You, Don-Sang (Department of Energy and Resource Engineering, Chosun University) ;
  • Park, Cheon-Young (Department of Energy and Resource Engineering, Chosun University)
  • 투고 : 2014.04.02
  • 심사 : 2014.06.26
  • 발행 : 2014.08.31

초록

폐 PCBs의 스크랩으로부터 염소-차아염소산염 용액을 이용하여 Au와 Ag를 친환경적이고 효과적으로 용출시키고자 하였다. PCBs에 Cu, Sn, Sb, Al, Ni, Pb, Au 등과 같은 유용금속이 함유되어 있는 것을 EDS 분석으로 확인하였다. 최대 Au 용출율은 1%의 광액농도, 2:1의 염산:차아염소산나트륨 그리고 2 M의 NaCl 농도조건이다. Au 회수율이 가장 높은 메타중아황산나트륨 농도는 3 M에서였다. 염소-차아염소산염이 폐 컴퓨터에 함유되어 있는 Au와 Ag를 효과적으로 용출시킬 수 있는 용매제 임을 그리고 메타중아황산나트륨이 Au를 간단하게 침전시킬 수 있는 첨가제임을 확인하였다.

This study was carried out to find an environmental friendly and effective way to leach Au and Ag from scrap of Printed Circuit Boards (PCBs) using sodium-hypochlorite solution. In an EDS analysis, valuable metals such as Cu, Sn, Sb, Al, Ni, Pb and Au were all found in PCBs. The highest leaching rates obtained were 1% of pulp density with a chlorine:hypochlorite of 2:1 and a concentration of NaCl at 2M. The highest Au recovery was observed with the addition of sodium metabisulfite to make a 3M solution. It is confirmed that the leaching agent (chlorine-hypochlorite) could effectively leach Au and Ag from Printed Circuit Boards (scrap parts) and the additive reagent sodium metabisulfite could easily precipitate Au from the chlorine-hypochlorite solution.

키워드

참고문헌

  1. Almeida, M.F. and Amarante, M.A., 1995, Leaching of a silver bearing sulphide by-product with cyanide, thiourea and chloride solutions. Minerals Engineering, 8, 257-271. https://doi.org/10.1016/0892-6875(94)00124-U
  2. Baghalha, M., 2007, Leaching of an oxide gold ore with chloride/hypochlorite solutions. International Journal of Mineral Processing, 82, 178-186. https://doi.org/10.1016/j.minpro.2006.09.001
  3. Barbieri, L., Giovanardi, R., Lancellotti, I., and Michelazzi, M., 2010, A new environmentally friendly process for the recovery of gold from electronic waste. Environmental Chemistry Letters, 8, 171-178. https://doi.org/10.1007/s10311-009-0205-2
  4. Brandl, H., Bosshard, R., and Wegmann, M., 2001, Computer-munching microbes: Metal leaching from electronic scrap by bacteria and fungi. Hydrometallurgy, 59, 319-326. https://doi.org/10.1016/S0304-386X(00)00188-2
  5. Curreli, L., Ghiani, M., Surracco, M., and Orru, G., 2005, Beneficiation of a gold bearing energite ore by flotation and As leaching with Na-hypochlorite. Minerals Engineering, 18, 849-854. https://doi.org/10.1016/j.mineng.2005.01.023
  6. Habashi, F., 2009, Recent trends in extractive metallurgy. Journal of Mining and Metallurgy, 45B, 1-13.
  7. Herreros, O., Quiroz, R., Manzano, E., Bou, C., and Vinals, J., 1998, Copper extraction from reverberatory and flash furnace slags by chlorine leaching. Hydrometallurgy, 49, 87-101. https://doi.org/10.1016/S0304-386X(98)00010-3
  8. Hilson, G. and Monhemius, A.J., 2006, Alternative to cyanide in the gold mining industry: What prospects for the future? Journal of Cleaner production, 14, 1158-1167. https://doi.org/10.1016/j.jclepro.2004.09.005
  9. Hoffmann, J.E., 1990, The wet chlorination of electrolytic refinery slimes. The Journal of The Minerals, Metals and Materials Society, 42, 50-54.
  10. Hoffmann, J.E., 1992, Recovering precious metals from electronic scrap. The Journal of The Minerals, Metals and Materials Society, 44, 43-48.
  11. Ikiz, D., Gulfen, M., and Aydin, A.O., 2006, Dissolution kinetics of primary chalcopyrite ore in hypochlorite solution. Minerals Engineering, 19, 972-974. https://doi.org/10.1016/j.mineng.2005.09.047
  12. Jeffrey, M.I., Breuer, P.L., and Choo, W.L., 2001, A kinetic study that compares the leaching of gold in the cyanide, thiosulfate, and chloride systems. Metallurgical and Materials Transactions B, 32, 979-986.
  13. Kang, H.Y. and Schoenung, J.M., 2005, Electronic waste recycling: A review of U.S. infrastructure and technology options. Resources Conservation and Recycling, 45, 368-400. https://doi.org/10.1016/j.resconrec.2005.06.001
  14. Kim, B,J., Cho, K.H., Choi, N.C., and Park, C.Y., 2012, The leaching characteristics of Au in CPU chip of abandoned computer using chlorine-hypochlorous acid. The Korean Society for Geosystem Engineering, 49, 778-787. (in Korean)
  15. Lee, J.C., Song, H.T., and Yoo, J.M., 2007, Present status of the recycling of waste electrical and elelctronic equipment in Korea. Resources Conservation and Recycling, 50, 380-397. https://doi.org/10.1016/j.resconrec.2007.01.010
  16. Leon, C.A.V. and Quispe, C.C.S., 1986, Non-conventional Peruvian processing. Mining International, 42-46.
  17. Lin, J.C. and Huarng, J.J., 1994, Electrochemical stripping of gold from Au-Ni-Cu electronic connector scrap in an aqueous solution of thiourea. Journal of Applied Electrochemistry, 24, 157-165.
  18. Nam, K.S., Jung, B.H., An, J.W., Ha, T.J., Tran, T., and Kim, M.J., 2008, Use of chloride-hypochlorite leachants to recover gold from tailing. International Journal of Mineral Processing, 86, 131-140. https://doi.org/10.1016/j.minpro.2007.12.003
  19. Padilla, R., Giron, D., and Ruiz, M.C., 2005, Leaching of enargite in H2SO4-NaCl-O2 media. Hydrometallurgy, 80, 272-279. https://doi.org/10.1016/j.hydromet.2005.08.006
  20. Pangum, L.S. and Browner, R.E., 1996, Pressure chloride leaching of a refractory gold ore. Minerals Engineering, 9, 457-556.
  21. Pant, D., Joshi, D., Upreti, M.K., and Kotnala, R.K., 2012, Chemical and biological extraction of metals present in E waste: A hybrid technology. Waste Management, 32, 979-990. https://doi.org/10.1016/j.wasman.2011.12.002
  22. Prasad, M.S., Mensah-Biney, R., and Pizarro, R.S., 1991, Modern trends in gold processing-overview. Minerals Engineering, 4, 1257-1277. https://doi.org/10.1016/0892-6875(91)90171-Q
  23. Puvvada, G.V.K. and Murthy, D.S.R., 2000, Selective precious metals leaching from a chalcopyrite concentrate using chloride/hypochlorite media. Hydrometallurgy, 58, 185-191. https://doi.org/10.1016/S0304-386X(00)00083-9
  24. Saleh, S.M., Said, S.A., and El-Shahawi, M.S., 2001, Extraction and recovery of Au, Sb and Sn from electrorefined solid waste. Analytica Chimica Acta, 436, 69-77. https://doi.org/10.1016/S0003-2670(01)00866-2
  25. Tuncuk, A., Stazi, V., Akcil, A., Yazici, E.Y., and Deveci, H., 2012, Aqueous metal recovery techniques from escrap: Hydrometallurgy in recycling. Minerals Engineering, 25, 28-37. https://doi.org/10.1016/j.mineng.2011.09.019
  26. Xiang, Y., Wu, P., Zhu, N., Zhang, T., Liu, J., Wu, J., and Li, P., 2010, Bioleaching of copper from waste printed circuit boards by bacterial consortium enriched from acid mine drainage. Journal of hazardous Materials, 184, 812-818. https://doi.org/10.1016/j.jhazmat.2010.08.113
  27. Yamasue, E., Minamino, R., Numata, T., Najajima, K., Murakami, S., Daigo, I., Hashimoto, S., Okumura, H., and Ishihara, K.N., 2009, Novel evaluation method of elemental recyclability from urban mine-concept of urban ore TMR. Materials Transactions, 50, 1536-1540. https://doi.org/10.2320/matertrans.MBW200816
  28. Yang, T., Xu, Z., Wen, J., and Yang, L., 2009, Factors influencing bioleaching copper from waste printed circuit boards by Acidithiobacillus ferrooxidans. Hydrometallurgy, 97, 29-32. https://doi.org/10.1016/j.hydromet.2008.12.011