DOI QR코드

DOI QR Code

Response characterization of slim-hole density sonde using Monte Carlo method

Monte Carlo 방법을 이용한 소구경용 밀도 존데의 반응 특성

  • Won, Byeongho (Heesong Geotek Co., Ltd.) ;
  • Hwang, Seho (Geologic Environment Division, Korea Institute of Geoscience and Mineral Resources) ;
  • Shin, Jehyun (Geologic Environment Division, Korea Institute of Geoscience and Mineral Resources) ;
  • Park, Chang Je (Nuclear Engineering, Sejong University) ;
  • Kim, Jongman (Geologic Environment Division, Korea Institute of Geoscience and Mineral Resources) ;
  • Hamm, Se-Yeong (Department of Geological Sciences, Pusan National University)
  • 원병호 ((주)희송지오텍) ;
  • 황세호 (한국지질자원연구원 지구환경연구본부) ;
  • 신제현 (한국지질자원연구원 지구환경연구본부) ;
  • 박창제 (세종대학교 원자력공학과) ;
  • 김종만 (한국지질자원연구원 지구환경연구본부) ;
  • 함세영 (부산대학교 지질환경과학과)
  • Received : 2014.08.11
  • Accepted : 2014.08.25
  • Published : 2014.08.31

Abstract

We performed MCNP modeling for density log, and examined its reliability and validity comparing the correction curves from physical borehole model. Based on the constructed numerical model, numerical modelings of density sonde in three-inch borehole were carried out under the various conditions such as the existence and type of casing or fluid, and also the stand-off between the sonde and borehole wall. These results of numerical modeling quantitatively reflect effects of casing and fluid in borehole, and moreover, demonstrate constant patterns with interval change from borehole wall. From this study, numerical modeling using MCNP shows a good applicability for well logging, and therefore, can be efficiently used for the calibration of well logging data under the various borehole conditions.

MCNP를 이용한 밀도검층에 대한 수치모델링을 수행하였고, 인공 모형 시추공에 대한 교정곡선과의 비교를 통하여 MCNP 수치모델링의 신뢰성을 검토하였다. 이를 바탕으로 케이싱의 유무와 종류, 공내수의 유무, 존데와 공벽과의 거리 변화 등 국내 물리검층 자료 취득 현장에서 쉽게 접하는 3인치 시추공 환경에 대한 밀도검층 수치모델링을 수행하였다. 수치모델링 결과는 케이싱과 공내수의 영향을 정량적으로 반영하고 있으며 공벽으로부터의 간격 변화에 따른 일정한 양상을 보여준다. 본 연구를 통하여 MCNP를 이용한 수치모델링의 적용성을 파악할 수 있었으며 이를 활용하여 효과적인 검층 보정이 가능할 것으로 판단된다.

Keywords

References

  1. Baker, P. E., 1957, Density logging with gamma rays, Petrol. Trans AIME, 219, 289-294.
  2. Choi, H., 2010, Borehole environmental correction of density log using Monte Carlo simulation for a slimhole, Master Thesis, Hanyang University, 53.
  3. Ellis, D. V., 2003, Formation porosity estimation from density logs, Petrophysics, 44, 306-316.
  4. Gaymard, R., and Poupon, A., 1968, Response of neutron and formation density logs in hydrocarbon-bearing formations, The Log Analyst, 9, 3-12.
  5. Hwang, S., and Lee, S. K., 2008, A review on the geophysical well logging for geotechnical and groundwater environmental applications in Korea, Journal of the Korean Society for Geosystem Engineering, 45, 67-82.
  6. Hwang, S., Shin, J., Park, K. G., Park, Y. S., Lee, S. K., and Cho, C. H., 2004, Quality control of gamma-gamma (density) log, Joint Symposium of Geophysics and Exploration Geophysics, 32-39.
  7. Ku, B., Nam, M. J., and Hwang, S., 2012, A study on slim-hole density logging based on numerical simulation, Geophysics and Geophysical Exploration, 15, 227-234. https://doi.org/10.7582/GGE.2012.15.4.227
  8. Lee, S. K., Hwang, S., Hwang, H. S., and Park, I. H., 1998, Quality control for quantitative geophysical logging, KIGAM Research report KR-98(C)-10, 40-41.
  9. Los Alamos National Laboratory, 2008, MCNP Manual, 1, 1-2, 8.
  10. Pickell, J. J., and Heacock, J. G., 1960, Density logging, Geophysics, 25, 891-904.
  11. Samworth, J. R., 1992, The dual-spaced density log - characteristics, calibration, and compensation, The Log Analyst, 33, 42-49.
  12. Scott, J. H., Muller, D. C., and Jiajin, L., 1988, A compensated density tool for mineral logging, The Log Analyst, 29, 123-131.
  13. Souza, E. M., Correa, S. C. A., Silva, A. X., Lima, I. C. B., Rocha, P. L. F., and Lopes, R. T., 2010, Simulation of density curve for slim borehole using the Monte Carlo code MCNPX, 13rd Brazilian of Thermal Science and Engineering, Proc. of ENCIT.
  14. Theys, P. P., 1991, Log data acquisition and quality control, Editions Technip, 330.
  15. Tittman, J., and Wahl, J. S., 1965, The physical foundations of formation density logging (gamma-gamma), Geophysics, 30, 284-294. https://doi.org/10.1190/1.1439574
  16. Zak, A. J., and Smith, J. E., 1959, Gamma ray-density logging, AIME, Reprint no. 1253-G.

Cited by

  1. Neutron Induced Capture Gamma Spectroscopy Sonde Design and Response Analysis Based on Monte Carlo Simulation vol.18, pp.3, 2015, https://doi.org/10.7582/GGE.2015.18.3.154