DOI QR코드

DOI QR Code

비제약적 환경에서 얼굴 주요위치 특징 서술자 기반의 얼굴인식

Face Recognition Based on Facial Landmark Feature Descriptor in Unconstrained Environments

  • 김대옥 (연세대학교 컴퓨터과학과) ;
  • 홍종광 (연세대학교 컴퓨터과학과) ;
  • 변혜란 (연세대학교 컴퓨터과학과)
  • 투고 : 2014.02.27
  • 심사 : 2014.07.04
  • 발행 : 2014.09.15

초록

본 논문에서는 비제약적 얼굴 데이터 베이스를 위한 확장성 있는 얼굴 인식 방법을 연구하고, 간단한 실험 결과를 소개한다. 기존의 얼굴 인식 연구들은 주로 조명, 얼굴 각도, 표정, 배경 등 제약이 있는 환경에서의 정확도 향상에 초점을 맞추고 있어서 비제약적 얼굴 데이터 베이스에 사용하기에 적합하지 않다. 제안하는 얼굴인식 방법은 비제약적 얼굴 인식을 위한 특징 추출 알고리즘으로, 먼저 지역적 특징이 존재하는 눈, 코, 입과 같이 얼굴의 중요한 특징을 나타내는 영역을 분리한다. 각 얼굴 주요 위치는 고차원의 다중 스케일 국부 이진패턴 히스토그램(Multi-scale LBP histogram) 특징 벡터로 기술된다. 단일 얼굴 주요 위치에 해당하는 다중 스케일 국부 이진패턴 히스토그램 특징 벡터는 주성분 분석법(PCA: Principal Component Analysis)과 선형 판별 분석법(LDA: Linear Discriminant Analysis)의 차원 축소 과정을 통해 저차원 얼굴 특징 벡터를 생성한다. 저차원 얼굴 특징 벡터는 랭크 획득과 Precision at k(p@k) 성능 평가 방법을 이용하여 제안한 알고리즘의 얼굴 인식 성능을 검증한다. 본 연구는 FERET, LFW 및 PubFig83 데이터 베이스를 이용하여 얼굴 인식 실험을 수행하였으며, 제안한 알고리즘을 이용한 얼굴 인식 방법이 기존의 방법보다 향상된 인식성능을 보였다.

This paper proposes a scalable face recognition method for unconstrained face databases, and shows a simple experimental result. Existing face recognition research usually has focused on improving the recognition rate in a constrained environment where illumination, face alignment, facial expression, and background is controlled. Therefore, it cannot be applied in unconstrained face databases. The proposed system is face feature extraction algorithm for unconstrained face recognition. First of all, we extract the area that represent the important features(landmarks) in the face, like the eyes, nose, and mouth. Each landmark is represented by a high-dimensional LBP(Local Binary Pattern) histogram feature vector. The multi-scale LBP histogram vector corresponding to a single landmark, becomes a low-dimensional face feature vector through the feature reduction process, PCA(Principal Component Analysis) and LDA(Linear Discriminant Analysis). We use the Rank acquisition method and Precision at k(p@k) performance verification method for verifying the face recognition performance of the low-dimensional face feature by the proposed algorithm. To generate the experimental results of face recognition we used the FERET, LFW and PubFig83 database. The face recognition system using the proposed algorithm showed a better classification performance over the existing methods.

키워드

과제정보

연구 과제 주관 기관 : 한국연구재단

참고문헌

  1. Rodriguez, Yann, and Sebastien Marcel, "Face authentication using adapted local binary pattern histograms," Computer Vision-ECCV 2006, Springer Berlin Heidelberg, pp. 321-332, 2006.
  2. Liao, Shengcai, et al., "Learning multi-scale block local binary patterns for face recognition," Advances in Biometrics, Springer Berlin Heidelberg, pp. 828-837, 2007.
  3. Wei Wang, Weimin Chen, Dongxia Xu, "Pyramid-based Multi-scale LBP Features for Face Recognition," 2011 International Conference on Multimedia and Signal Processing, 2011.
  4. Cao, Zhimin, et al., "Face recognition with learning based descriptor," Computer Vision and Pattern Recognition, 2010 IEEE Conference on, IEEE, 2010.
  5. Wu, Zhong, et al., "Scalable face image retrieval with identity-based quantization and multireference reranking," Pattern Analysis and Machine Intelligence, IEEE Transactions on, 33.10: 1991-2001, 2011. https://doi.org/10.1109/TPAMI.2011.111
  6. D. Chen, X. Cao, F. Wen, and J. Sun, "Blessing of dimensionality: High dimensional feature and its efficient compression for face verification," Computer Vision and Pattern Recognition, 2013 IEEE Conference on. IEEE, 2013.
  7. Turk, Matthew, and Alex Pentland, "Eigenfaces for recognition," Journal of cognitive neuroscience 3.1: 71-86, 1991. https://doi.org/10.1162/jocn.1991.3.1.71
  8. Belhumeur, Peter N., Joao P. Hespanha, and David J. Kriegman, "Eigenfaces vs. fisherfaces: Recognition using class specific linear projection," Pattern Analysis and Machine Intelligence, IEEE Transactions on, 19.7: 711-720, 1997. https://doi.org/10.1109/34.598228
  9. P. J. Phillips, H. Moon, P.J.Rauss, and S. Rizvi, "The FERET evaluation methodology for face recognition algorithms," IEEE Transactions on Pattern Analysis and Machine Intelligence, Vol. 22, No. 10, Oct. 2000.
  10. Gary B. Huang, Manu Ramesh, Tamara Berg, Erik L. Miller, "Labeled Faces in the Wild: A Database for Studying Face Recognition in Unconstrained Environments," University of Massachusetts, Amherst, Technical Report 07-49, Oct. 2007.
  11. Nicolas Pinto, Zak Stone, Todd Zickler, David D. Cox, "Scaling-up Biologically-Inspired Computer Vision: A Case-Study on Facebook," IEEE Computer Vision and Pattern Recognition, Workshop on Biologically Consistent Vision, 2011.
  12. Uricar, Michal, Vojtech Franc, and Vaclav Hlavac, "Detector of facial landmarks learned by the structured output SVM," VISAPP: 547-556, 2012.
  13. Ojala, Timo, Matti Pietikainen, and David Harwood, "A comparative study of texture measures with classification based on featured distributions," Pattern recognition 29.1: 51-59, 1996. https://doi.org/10.1016/0031-3203(95)00067-4
  14. Neerj Kumar, Alexander C. Berg, Peter N. Belhumeur, and Shree K. Nayar, "Attribute and Simile Classifiers for Face Verification," International Conference on Computer Vision (ICCV), 2009.
  15. Hyeonjoon Moon, P Jonathon Phillips, "Computational and performance aspects of PCA-based face-recognition algorithms," Perception-London, Vol. 30, pp. 303-321, 2001.