Acknowledgement
Supported by : 한국연구재단
References
- Liu, H. et al., Automatic resolution of ambiguous terms based on machine learning and conceptual relations in the UMLS, J. Am. Med. Inform. Assoc., Vol. 9, No. 6, pp. 621-636, 2002. https://doi.org/10.1197/jamia.M1101
- Bodenreider,O. (2007) The Unified Medical Language System: What is it and how to use it? In Tutorial at Medinfo 2007.
- Xu, H. et al., Machine learning and word sense disambiguation in the biomedical domain: design and evaluation issues, BMC Bioinformatics, 7, 334, 2006. https://doi.org/10.1186/1471-2105-7-334
- Okazaki, N. et al., Building a high-quality sense inventory for improved abbreviation disambiguation, Bioinformatics, Vol. 26, No. 9, pp. 1246-1253, 2010. https://doi.org/10.1093/bioinformatics/btq129
- Schuemie, M.J. et al., Distribution of information in biomedical abstracts and full-text publications, Bioinformatics, 20, pp. 2597-2604, 2004. https://doi.org/10.1093/bioinformatics/bth291
- Xu, H. et al., Gene symbol disambiguation using knowledge-based profiles, Bioinformatics, Vol. 23, No. 8, pp. 1015-1022, 2007. https://doi.org/10.1093/bioinformatics/btm056
- Blei, D. M. et al., Latent Dirichlet Allocation, Journal of Machine Learning Research, 3, pp. 993-1022, 2003.
- Wallach, H. M. et al., Rethinking LDA: why priors matter, In Proceedings NIPS 2009, pp. 1973-1981, 2009.
- Pakhomov, S., Semi-supervised maximum entropy based approach to acronym and abbreviation normalization in medical texts, In Proceedings ACL 2002, pp. 160-167, 2002.
- Stevenson, M. et al., Disambiguation of biomedical abbreviations, In Proceedings Workshop on BioNLP, pp. 71-79, 2009.
- Gaudan, S. et al., Resolving abbreviations to their senses in MEDLINE, Bioinformatics, Vol. 21, No. 18, pp. 3658-3664, 2005. https://doi.org/10.1093/bioinformatics/bti586
- Zhang, W. et al., Entity linking with effective acronym expansion, instance selection and topic modeling, In Proceedings IJCAI 2011, pp. 1909-1914, 2011.
- Wallach, H. M., Topic modeling: beyond bag-of-words, In Proceedings ICML 2006, pp. 977-984, 2006.
- Wang, X. et al., Topical n-grams: phrase and topic discovery, with an application to information retrieval, In Proceedings IEEE ICDM 2007, pp. 697-702, 2007.
- Griffiths, T. et al., Topics in semantic representation, Psychological Review, Vol. 114, No. 2, pp. 211-244, 2007. https://doi.org/10.1037/0033-295X.114.2.211
- Cohn, D. and Hofmann, T., The missing link - a probabilistic model of document content and hypertext connectivity, Advances in Neural Information Processing Systems, Vol. 13, pp. 430-436, 2001.
- Nallapati, R. et al., Joint latent topic models for text and citations, In Proceedings ACM SIGKDD ICKDDM 2008, pp. 542-550, 2008.
- Liu, Y. et al., Joint models of topic and author community, In Proceedings ICML 2009, 382, 84, 2009.
- Hofmann, T., Probabilistic latent semantic analysis, In Proceedings UAI 1999, pp. 289-296, 1999.
- Heinrich, G., Parameter estimation for text analysis, Technical Note, 2008.