Nanofibrous Scaffolds in Biomedical Applications

  • Gupta, Kailash Chandra (Department of Polymer Science and Engineering, Kyungpook National University) ;
  • Haider, Adnan (Department of Polymer Science and Engineering, Kyungpook National University) ;
  • Choi, Yu-Ri (Department of Polymer Science and Engineering, Kyungpook National University) ;
  • Kang, Inn-Kyu (Department of Polymer Science and Engineering, Kyungpook National University)
  • Received : 2014.02.21
  • Accepted : 2014.04.30
  • Published : 2014.06.01

Abstract

Nanofibrous scaffolds are artificial extracellular matrices which provide natural environment for tissue formation. In comparison to other forms of scaffolds, the nanofibrous scaffolds promote cell adhesion, proliferation and differentiation more efficiently due to having high surface to volume ratio. Although scaffolds for tissue engineering have been fabricated by various techniques but electrospun nanofibrous scaffolds have shown great potential in the fields of tissue engineering and regeneration. This review highlights the applications and importance of electrospun nanofibrous scaffolds in various fields of biomedical applications ranging from drug delivery to wound healing. Attempts have also been made to highlights the advantages and disadvantages of nanofirbous scaffolds fabricated for biomedical applications using technique of electrospinning. The role of various factors controlling drug distribution in electrospun nanofibrous scaffold is also discussed to increase the therapeutic efficiency of nanofibrous scaffolds in wound healing and drug delivery applications.

Keywords

References

  1. R. Rosic, P. Kocbek, J. Pelipenko, J. Kristl, S. Baumgartner, "Nanofibers and their biomedical use," Acta Pharma., 63, 295 (2013).
  2. A. Haider, K. C. Gupta, I. K. Kang, "Morphological effects of HA on the cell compatibility of electrospun HA/PLGA composite nanofiber scaffolds," BioMed Res. Int., (2014) http://dx.doi.org/10.1155/2014/308306.
  3. X. Li, M. A. Kanjwal, L. Lin I. S. Chronakis, "Electrospun polyvinyl-alcohol nanofibers as oral fast-dissolving delivery system of caffeine and riboflavin," Colloids Surf B Biointerf., 103, 1828 (2013).
  4. U. E. Illangakoon, T. Nazir, G. R. Williams, and N. P. Chatterton, "Mebeverine-loaded electrospun nanofibers: Physicochemical characterization and dissolution studies," J. Pharma. Sci., 103, 283 (2014). https://doi.org/10.1002/jps.23759
  5. K. Karthikeyan, S. Guhathakarta, R. Rajaram, P. S. Korrapati, "Electrospun zein/eudragit nanofibers based dual drug delivery system for the simultaneous delivery of aceclofenac and pantoprazole," Int. J. Pharm., 438, 17 (2012).
  6. W. Qian, D. G. Yu, Y. Li, Y. Z. Liao, X. Wang and L. Wang, "Dual drug release electrospun core-shell nanofibers with tunable dose in the second phase," International J. Mol. Sci., 15, 774 (2014). https://doi.org/10.3390/ijms15010774
  7. X. Y. Li, Y. C. Li, D. G. Yu, Y. Z. Liao, X. Wang, "Fast disintegrating quercetin-loaded drug delivery systems fabricated using coaxial electrospinning," Int. J. Mol. Sci., 14, 21647 (2013). https://doi.org/10.3390/ijms141121647
  8. Y. Su, Q. Su, W. Liu, M. Lim, J. R. Venugopal, X. Mo, S. Ramakrishna, S. S. Al-Deyab, M. El-Newehy, "Controlled release of bone morphogenetic protein and dexamethasone loaded in core-shell PLLACL-collagen fibers for use in bone tissue engineering," Acta Biomater., 1, 763 (2012).
  9. A. Anthony and R. P. Lanza, Methods of tissue engineering (Academic Press, London, 2001).
  10. J. D. Hartgerink, E. Beniash, and S. I. Stupp, "Self-assembly and mineralization of peptide-amphiphile nanofibers", Science, 294, 1684 (2001). https://doi.org/10.1126/science.1063187
  11. B. Gu, J. V. Badding, and A. Sen, "A new approach in melt-blown technique for fabrication of polymer nanofibers", Polym. Prepr., 44, 142 (2003).
  12. L. Feng, S. Li, H. Li, J. Zhai, Y. Song, L. Jiang, and D. Zhu, "Super-hydrophobic surface of aligned poly(acrylonitrile) nanofibers," Angew. Chem. Int. Edit., 41, 1221 (2002). https://doi.org/10.1002/1521-3773(20020402)41:7<1221::AID-ANIE1221>3.0.CO;2-G
  13. G. R. Williams, N. P. Chatterton, T. Nazir, D. G. Yu, L. M. Zhu, C. J. Branford-White, "Electrospun nanofibers in drug delivery: Recent developments and perspectives," Ther. Deliv., 3, 515 (2012). https://doi.org/10.4155/tde.12.17
  14. P. C. Caracciolo, P. C. Tornello, F. M. Ballarin and G. A. Abraham, "Development of electrospun nanofibers for biomedical applications: state of the art in Latin America," J. Biomater. Tissue Eng., 3, 39 (2013). https://doi.org/10.1166/jbt.2013.1066
  15. B. Song, C. Wu, J. Chang, "Dual drug release from electrospun poly(lactic-co-glycolic acid)/ mesoporous silica nanoparticles composite mats with distinct release profiles," Acta Biomater., 8, 1901 (2012). https://doi.org/10.1016/j.actbio.2012.01.020
  16. Q. Xiang, Y. M. Ma, D. G. Yu, M. Jin, G. R. Williams, "Electrospinning using a teflon-coated spinneret," Appl. Surf. Sci., 284, 889 (2013). https://doi.org/10.1016/j.apsusc.2013.08.030
  17. Y. K. Joung, J. H. Heo, K. M. Park and K. D. Park, "Controlled release of growth factors from core-shell structured PLGS microfibers for tissue engineering," Biomaterial Research, 15, 78 (2011).
  18. P. Zahedi, I. Rezaeian, S. O. Ranaei-Siadat, S. H. Jafari and P. Supaphol, "A review on wound dressings with an emphasis on electrospun nanofibrous polymeric bandages," Polym. Adv. Technol., 21, 77 (2010). https://doi.org/10.1016/S0921-8831(09)00247-7
  19. R. Uppal, G. N. Ramaswamy, C. Arnold, R. Goodband and Y. Wang, "Hyaluronic acid nanofiber wound dressing-production, characterization, and in vivo behaviour," J. Biomed. Mater. Res. B: Appl. Biomaterials, 97B, 20 (2011).
  20. M. Jannesari, J. Varshosaz, M. Morshed and M. Zamani, "Composite poly(vinyl alcohol)/poly (vinyl acetate) electrospun nanofibrous mats as novel wound dressing matrix for controlled release of drugs, Int. J. Nanomedicine, 6, 993 (2011).
  21. S. Balaji, S. V. Vaikunth, S. A. Lang, A. Q. Sheikh, F. Y. Lim, T. M. Cromleholme and D. A. Narmoneva, "Tissue-engineered provisional matrix as a novel approach to enhance diabetic wound healing," Wound Repair Regeneration, 20, 15 (2012). https://doi.org/10.1111/j.1524-475X.2011.00750.x
  22. X. M. Wu, C. Branford-White, L. M. Zhu, N. Chatterton, D. G. Yu, "Ester prodrug-loaded electrospun cellulose acetate fiber mats as transdermal drug delivery systems," J. Mater. Sci., 21, 2403 (2010).
  23. T. D. J. Heunis and L. M. T. Dicks, "Nanofibers offer alternative ways to the treatment of skin infections," J. Biomed. Biotechnol, 2010, 1 (2010).
  24. M. Zamani, M. Morshed, J. Varshosaz and M. Jannesari, "Controlled release of metronidazole benzoate from poly(${\varepsilon}$-caprolactone) electrospun nanofibers for periodontal diseases," Eur. J. Pharm. Biopharm., 75, 179 (2010). https://doi.org/10.1016/j.ejpb.2010.02.002
  25. Y. N. Jiang, H. Y. MoD. G. Yu, "Electrospun drug-loaded coresheath PVP/zein nanofibers for biphasic drug release," Int. J. Pharm., 438, 232 (2012). https://doi.org/10.1016/j.ijpharm.2012.08.053
  26. W. Xu, A. Atala, J. J. Yoo and S. J. Lee, "Controllable dual protein delivery through electrospun brous scaffolds with different hydrophilicities," Biomed. Mater., 8, (2013) 014104 (8pp) doi:10.1088/1748-6041/8/1/014104.
  27. I. Last, Y. Levy, and J. Jortner, "Beyond the Rayleigh instability limit for multicharged finite systems: From fission to Coulomb Explosion," PNAS, 99, 9107 (2002). https://doi.org/10.1073/pnas.142253999
  28. P. K. Baumgarten, "Electrostatic spinning of acrylic microfibers", J. Colloid and Interf. Sci., 36, 71 (1971). https://doi.org/10.1016/0021-9797(71)90241-4
  29. D. Annis, A. Bornat, R. O. Edwards, A. Higham, B. Loveday, J. Wilson, "An elastomeric vascular prosthesis", Trans. Am. Soc. Artif. Intern. Organs, 71, 209 (1978).
  30. L. Larrondo, M. R. St. John, R. "Electrostatic fiber spinning from polymer melts. II. Examination of the flow field in an electrically driven jet". J. Polym. Sci., 19, 921 (1981).
  31. S. Das, A. S. Wajid, S. K. Bhattacharia, M. D. Wilting, I. V. Rivero, M. J. Green, "Electrospinning of polymer nanofibers loaded with noncovalently functionalized grapheme," J. Appl. Polym. Sci., 128, 4040 (2013). https://doi.org/10.1002/app.38694
  32. D. Reneker, I. Chun. "Nanometre diameter fibres of polymer, produced by electrospinning", Nanotechnology, 7, 216 (1996). https://doi.org/10.1088/0957-4484/7/3/009
  33. T. J. Till, H. A. von Recum, "Electrospinning: applications in drug delivery and tissue engineering", Biomaterials, 29, 1986 (2008).
  34. A. Frenot, I. S. Chronakis. "Polymer nanofibers assembled by electrospinning", Curr. Opin. Int., 8, 64 (2003). https://doi.org/10.1016/S1359-0294(03)00004-9
  35. S. G. Kumbar, R. James, S. P. Nukavarapu and C. T. Laurencin. "Electrospun nanofiber scaffolds: engineering soft tissues," Biomed. Mater., 3, 1 (2008).
  36. C. Barnes, S. Sell, E. Boland. D. Simpson., G. Bowling, "Nanofibers technology: Designing the next generation of tissue engineering scaffolds," Adv. Drug Deliv. Rev. 59, 1413 (2007). https://doi.org/10.1016/j.addr.2007.04.022
  37. G. I. Taylor, "Electrically driven jets," Proc. R. Soc. London, Ser. A, 313, 453 (1969). https://doi.org/10.1098/rspa.1969.0205
  38. J. Yu, Y. J. Qiu, X. X. Zha, M. Yu, J. Rafique, J. Yin, "Production of aligned helical polymer nanofibers by electrospinning," Eur. Polym. J., 44, 2838 (2008). https://doi.org/10.1016/j.eurpolymj.2008.05.020
  39. Y. Zhang, J. Li, Q. Li, L. Zhu, X. Liu, X. Zhong, J. Meng, X. Cao, "Preparation of $CeO_2-ZrO_2$ ceramic fibers by electrospinning," J. Colloid Interf. Sci. 307, 567 (2007). https://doi.org/10.1016/j.jcis.2006.12.048
  40. R. Nirmala, D. Kalpana, J. W. Jeong, H. J. Oh, J. H. Lee, R. Navamathavan,Y. S. Lee, H. Y. Kim, "Multifunctional baicale in blended poly(vinyl alcohol) composite nanofibers via electrospinning", Colloids Surface A, 384, 605 (2011). https://doi.org/10.1016/j.colsurfa.2011.05.009
  41. H. Cao, X. Chen, J. Yao, Z. Shao, "Fabrication of an alternative regenerated silk fibroin nanofiber and carbonated hydroxyapatite multilayered composite via layer-by-layer," J. Mater. Sci., 48, 150 (2013). https://doi.org/10.1007/s10853-012-6722-6
  42. H. Wu, W. Pan, D. Lin, H. Li, "Electrospinning of ceramic nanofibers: Fabrication, assembly and applications, J. Adv. Ceramics, 1, 2 (2012). https://doi.org/10.1007/s40145-012-0002-4
  43. C. Y. Wang, K. H. Zhang, C. Y. Fan, X. M. Mo, H. J. Ruan, F. F. Li, "Aligned natural-synthetic polyblend nanofibers for peripheral nerve regeneration," Acta Biomater., 7, 634 (2011). https://doi.org/10.1016/j.actbio.2010.09.011
  44. P. Brun, F. Ghezzo, M. Roso, R. Danesin, A. Palu G, Bagno, M. Modesti, I. Castagliuolo, M. Dettin, "Electrospun scaffolds of self-assembling peptides with poly(ethylene oxide) for bone tissue engineering", Acta Biomater., 7, 2526 (2011). https://doi.org/10.1016/j.actbio.2011.02.025
  45. H. R. Pant, M. P. Neupane, B. Pant, G. Panthi, H. J. Oh, M. H. Lee, H. Y. Kim, "Fabrication of highly porous poly(${\varepsilon}$-caprolactone) fibers for novel tissue scaffold via water-bath electrospinning," Colloids and Surfaces B, Biointerf., 88, 587 (2011). https://doi.org/10.1016/j.colsurfb.2011.07.045
  46. S. Anuradha, K. Uma Maheswari, S. Swaminathan, "Fabrication of uniaxially aligned 3D electrospun scaffolds for neural regeneration," Biomed Mater, 6, (2011). Apr;6(2):025004. doi: 10.1088/1748-6041/6/2/025004. Epub 2011 Feb 7.
  47. I. Moreno, V. Gonzalez-Gonzalez, J. Romero-Garcia, "Electrospun core-shell nanofibers for drug encapsulation and sustained release," Eur. Polym. J., 47, 1264 (2011). https://doi.org/10.1016/j.eurpolymj.2011.03.005
  48. S. Shao, L. Li, G. Yang, J. Li, C. Luo, T. Gong, S. Zhou, "Controlled green tea polyphenols release from electrospun PCL/MWCNTs composite nanofibers," Int. J. Pharm., 421, 310 (2011). https://doi.org/10.1016/j.ijpharm.2011.09.033
  49. L. Soletti, A. Nieponice, Y. Hong, S. H. Ye, J. J. Stankus, W. R. Wagner, D. A. Vorp, "In vivo performance of a phospholipid-coated bioerodable elastomeric graft for small- diameter vascular applications," J. Biomed. Mat Res-A, 96A, 436 (2011). https://doi.org/10.1002/jbm.a.32997
  50. Y. Luo, S. Nartker, H. Miller, D. Hochhalter, M. Wiederoder, S. Wiederoder, E. Setterington, L. T. Drzal, and E. C. Alocilja, "Surface Functionalization of Electrospun Nanofibers for Detecting E. coli O157:H7 and BVDV cells in a Direct-Charge Transfer," Biosensors and Bioelectronics, 26, 1612 (2010). https://doi.org/10.1016/j.bios.2010.08.028
  51. Y. Zheng, J. Wang, P. Yao, "Formaldehyde sensing properties of electrospun NiO-doped $SnO_2$ nanofibers," Sensors and Actuators B: Chemical, 156, 723 (2011). https://doi.org/10.1016/j.snb.2011.02.026
  52. I. Shabani, M. M. Hasani-Sadrabadi, V. Haddadi-Asl, M. Soleimani, "Nanofiber-based poly(electrolytes) as novel membranes for fuel cell applications," J. Membrane Sci., 368, 233 (2011). https://doi.org/10.1016/j.memsci.2010.11.048
  53. A. S. Nair, R. Jose, Y. Shengyuan, S. Ramakrishna, "A simple recipe for an efficient $TiO_2$ nanofiber-based dye-sensitized solar cell," J. Colloid Interf Sci., 353, 39 (2011). https://doi.org/10.1016/j.jcis.2010.09.042
  54. L. Wang, Y. Yu, P. C. Chen, D. W. Zhang, C. H. Chen, "Electrospinning synthesis of $C/Fe_3O_4$ composite nanofibers and their application for high performance lithium-ion batteries," J. Power Sources, 183, 717 (2008). https://doi.org/10.1016/j.jpowsour.2008.05.079
  55. A. Camposeo, L. Persano, D. Pisignano, "Light-Emitting Electrospun Nanofibers for Nanophotonics and Optoelectronics," Macromolecular Materials and Engineering, 298, 487 (2013). https://doi.org/10.1002/mame.201200277
  56. S. Yun, S. Lim, "Improved conversion efficiency in dye-sensitized solar cells based on electrospun Al-doped ZnO nanofiber electrodes prepared by seed layer treatment," J. Solid State Chem., 184, 273 (2011). https://doi.org/10.1016/j.jssc.2010.11.024
  57. Z. Yaakob, D. Jafar Khadem, S. Shahgaldi, W. R. Wan Daud, S.M. Tasirin, "The role of Al and Mg in the hydrogen storage of electrospun ZnO nanofibers," Int. J. Hydrogen Energ, 37, 8388 (2012). https://doi.org/10.1016/j.ijhydene.2012.02.092
  58. J. Zeng, X. Xu. X. Chen. Q. Linag. X. Bian, L. Yang an X. Jing, "Biodegradable electrospun fibers for drug delivery," J. Control. Rel., 92, 227 (2003). https://doi.org/10.1016/S0168-3659(03)00372-9
  59. R. Langer, "Drug delivery and targeting," Nature, 392, (6679, Suppl), 5 (1998).
  60. S. Tunngprapa, I. Jungchud, and P. Supapol, "Release characteristics of four model drugs from drug loaded electrospun cellulose acetate fiber mats," Polymer, 48, 5030 (2007). https://doi.org/10.1016/j.polymer.2007.06.061
  61. J. Quan, Y. Yu, C. Branford-White, G. R. Williams, D. G. Yu, W. Nie, L. M. Zhu, "Preparation of Ultrafine Fast-dissolving Feruloyloleyl-glycerol-loaded Polyvinylpyrrolidone Fiber Mats via Electrospinning," Colloid Surface B, 88, 304 (2011). https://doi.org/10.1016/j.colsurfb.2011.07.006
  62. G. Verreck, I. Chun, J. Peter, B. Rasen, and M. E. Brewster "Preparation and characterization of nanofibers containing amorphous drug dispersion generated by electrostatic spinning," Pharm. Res. 20, 810 (2003). https://doi.org/10.1023/A:1023450006281
  63. X. Zong, K. Kim, D. Fang, S. Ran. B. S. Hsiao, and B. Chu, "Structure and process relationship of electrospun bioabsorbable nanofiber membranes," Polymer, 43, 4403 (2002). https://doi.org/10.1016/S0032-3861(02)00275-6
  64. J. M. Goodson, D. W. Holborow, R. L. Dunn, P. E. Hogan, and S. L. Dunham, "Monolithic tetracycline-containing fibers for cotrolled delivery to periodontal pocket," J. Periodontal, 54, 575 (1983). https://doi.org/10.1902/jop.1983.54.10.575
  65. E. R. Kenawy, G. L. Bowlin, K. Mansfield, J. Layman, D. G. Simpson, E. H. Sanders, G. E. Wnek, "Release of tetracycline hydrochloride from electrospun poly(ethylene-co-vinylacetate), poly (lactic acid), and a blend," J. Control. Rel., 81, 57 (2002). https://doi.org/10.1016/S0168-3659(02)00041-X
  66. S. Maretschek, A. Greinerb, and T. Kissel, "Electrospun biodegradable naofiber nanowoven for controlled release of protein," J. Control. Rel., 127, 180 (2008). https://doi.org/10.1016/j.jconrel.2008.01.011
  67. X. Xu, X. Zhuang, X. Chen, X. Wang, L. Yang and X. Xing, "Preparation of core-sheath composites nanofibers by emulsion electrospining", Macromol. Rapid Commun., 27, 1637 (2006). https://doi.org/10.1002/marc.200600384
  68. A. Saraf, L. S. Baggett, R. M. Raphael, F. K. Kasper, A. G. Mikos, "Regulated non-viral gene delivery from coaxial electrospun fiber mesh scaffolds," J. Control. Rel., 143, 95 (2010). https://doi.org/10.1016/j.jconrel.2009.12.009
  69. W. Ji, F. Yang, J. J. J. P. van den Beucken, Z. Bian, M. Fan, Z. Chen, J. A. Jansen, "Fibrous scaffolds loaded with protein prepared by blend or coaxial electrospinning," Acta Biomater., 6, 4199 (2010). https://doi.org/10.1016/j.actbio.2010.05.025
  70. Z. X. Meng, X. X. Xu, W. Zheng, H. M. Zhou, L. Li, Y. F. Zheng, X. Lou, "Preparation and characterization of electrospun PLGA/gelatin nanofibers as a potential drug delivery system", Colloid Surface B: Biointerfaces, 84, 97 (2011). https://doi.org/10.1016/j.colsurfb.2010.12.022
  71. H. K. Noh, S. W. Lee, J. M. Kim, J. E. Oh, K. H. Kim, C. P. Chung, S. C. Choi, W. H. Park, B. M. Min, "Electrospinning of chitin nanofibers: degradation behavior and cellular response to normal human keratinocytes and fibroblasts," Biomaterials, 27, 3934 (2006). https://doi.org/10.1016/j.biomaterials.2006.03.016
  72. M. Maleki, M. Latifi, M. Amani-Tehran, S. Mathur, "Electrospun core-shell nanofibers for drug encapsulation and sustained release," Polym. Eng. & Sci., 53, 1770 (2013). https://doi.org/10.1002/pen.23426
  73. S. H. Ranganath, C. H. Wang, "Biodegradable post-surgical chemotherapy against malignant Glioma", Biomaterials, 29, 2996 (2008). https://doi.org/10.1016/j.biomaterials.2008.04.002
  74. J. Yan, D. G. Yu, "Smoothening electrospinning and obtaining high quality cellulose acetate nanofibers using a modified coaxial process," J. Mater. Sci., 47, 7138 (2012). https://doi.org/10.1007/s10853-012-6653-2
  75. Y. K. Luu, K. Kim, B. S. Hsiao and B. Chu, "Development of a nanostructured DNA delivery scaffold via electrospinning of PLGA and PLA-PEG block copolymers," J. Control. Rel., 89, 341 (2003). https://doi.org/10.1016/S0168-3659(03)00097-X
  76. Z. M. Huang, C. L. He, A. Yang, Y. Zhang, X. J. Han, J. Yin, and Q. Wu, "Encapsulating drugs in biodegradable ultrafine fibers through coaxial electrospining," J. Biomat. Mat. Res., 77A, 169 (2006). https://doi.org/10.1002/jbm.a.30564
  77. A. Mickova, M. Buzgo, O. Benada, M. Rampichova, Z. Fisar, E. Filova, M. Tesarova, D. Lukas, E. Amler, "Core/shell nanofibers with embedded liposomes as a drug delivery system," Biomacromolecules, 13, 952 (2012). https://doi.org/10.1021/bm2018118
  78. P. Taepaibon, V. Rungsardthang, P. Supapol, "Drug loaded electrospun mats of poly(vinyl alcohol) fiber and their release characteristics of four model drugs," Nanotechnology, 17, 2317 (2006). https://doi.org/10.1088/0957-4484/17/9/041
  79. J. Xie, and C. H. Wang, "Electrospun micro and nanofibers for sustained delivery of paclitaxel to treat C6 glioma In Vitro", Pharma. Res., 23, 1817 (2006). https://doi.org/10.1007/s11095-006-9036-z
  80. X. Xu, X. Chen, Z. Wang, and X. Jing, X., "Ultrafine, PEG-PLA fiber loaded with both paclitaxel and doxorubicin hydrochloride and their In Vitro cytotoxicity," Eur. J. Pham. Biopharm., 72, 18 (2009). https://doi.org/10.1016/j.ejpb.2008.10.015
  81. S. T. Yohe, Y. L. Colson, M. W. Grinstaff, "Superhydrophobic materials for tunable drug release: Using displacement of air to control delivery rates," J. Am. Chem. Soc., 134, 2016 (2012). https://doi.org/10.1021/ja211148a
  82. S. T. Yohe, V. L. Herrera, Y. L. Colson, M. W. Grinstaff, "3D superhydrophobic electrospun meshes as reinforcement materials for sustained local drug delivery against colorectal cancer cells," Control. Rel., 162, 92 (2012). https://doi.org/10.1016/j.jconrel.2012.05.047
  83. M. Beck-Broichsitter, M. Thieme, J. Nguyen, T. Schmehl, T. Gessler, W. Seeger, S. Agarwal, A. Greiner, T. Kissel, "Novel 'nano in nano' composites for sustained drug delivery: Biodegradable nanoparticles encapsulated into nanofiber non-wovens," Macromol. Biosci., 19, 1527 (2010).
  84. J. Xu, Y. Jiao, X. Shao, C. Zhou, "Controlled dual release of hydrophobic and hydrophilic drugs from electrospun poly(L-lactic acid) fiber mats loaded with chitosan microspheres," Mater. Lett., 65, 2800 (2011). https://doi.org/10.1016/j.matlet.2011.06.018
  85. S. Yan, L. Xiaoqiang, L. Shuiping, M. Xiumei, S. Ramakrishna, "Controlled release of dual drugs from emulsion electrospun nanofibrous mats," Colloids Surf. B Biointerf., 73, 376 (2009). https://doi.org/10.1016/j.colsurfb.2009.06.009
  86. C. Huang, S. J. Soenen, E. van Gulck, G. Vanham, J. Rejman, S. Van Calenbergh, C. Vervaet, T. Coenye, H. Verstraelen, M. Temmerman, J. Demeester, S. C. De Smedt, "Electrospun cellulose acetate phthalate fibers for semen induced anti-HIV vaginal drug delivery," Biomaterials, 33, 962 (2012). https://doi.org/10.1016/j.biomaterials.2011.10.004
  87. A. Akhgari, Z. Heshmati, B. Sharif Makhmalzadeh, "Indomethacin electrospun nanofibers for colonic drug delivery: Preparation and characterization," Adv. Pharma. Bulletin, 3, 85 (2013).
  88. X. Shen, D. Yu, L. Zhu, C. Branford-White, K. White, N. P. Chatterton, "Electrospun diclofenac sodium loaded $Eudragit^{(R)}$ L 100-55 nanofibers for colon-targeted drug delivery." Int. J. Pharm., 408, 200 (2011). https://doi.org/10.1016/j.ijpharm.2011.01.058
  89. C. B. Weldon, J. H. Tsui, S. A. Shankarappa, V. T. Nguyen, M. Ma, D. G. Anderson, D. S. Kohane, "Electrospun drug-eluting sutures for local anesthesia," J. Control. Rel., 161, 903 (2012). https://doi.org/10.1016/j.jconrel.2012.05.021
  90. H. Jiang, Y. Hu, Y. Li, P. Zhao, K. Zhu, W. Chen, "A facile technique to prepare biodegradable coaxial electrospun nanofibers for controlled release of bioactive agents," J. Control. Rel., 108, 237 (2005). https://doi.org/10.1016/j.jconrel.2005.08.006
  91. X. L. Xu, L. X. Yang, X. Y. Xu, X. Wang, X. S. Chen, Q. Z. Liang, J. Zeng, X. B. Jing, "Ultrafine medicated fibers electrospun from W/O emulsions," J. Control. Rel., 108, 33 (2005). https://doi.org/10.1016/j.jconrel.2005.07.021
  92. Y. Yang, X. Li, W. Cui, S. Zhou, R. Tan, C. Wang, "Electrospun core-shell nanofibers for drug encapsulation and sustained release," J. Biomed. Mater. Res. A, 86, 374 (2008).
  93. H. S. Park, A. R. Kim and I. Noh, "Physical and biological evaluation of cross-linked hyaluronic acid film," Biomaterial Research, 17, 153 (2013).
  94. A. R. Kim, H. S. Park, S. S. Kim and I Noh, "Biological evaluation of cellulose hydrogel with temperature responsive particles," Biomateial Research, 17, 181 (2013).
  95. H. Nie, C. H. Wang, "Fabrication and characterization of PLGA/HAp composite scaffolds for delivery of BMP-2 plasmid DNA", J. Control. Rel., 120, 111 (2007). https://doi.org/10.1016/j.jconrel.2007.03.018
  96. W. R. Gombotz and D. K. Pettit, "Biodegradable polymers for protein and peptide drug delivery", Bioconjugate Chem., 6, 332 (1995). https://doi.org/10.1021/bc00034a002
  97. C. L. Casper, N. Yamaguchi, K. L. Kiick and J. F. Rabolt, "Functionalizing electrospun fibers with biologically relevant macromolecules," Biomacromolecules, 6, 1998 (2009).
  98. S. S. Ojha, D. R. Stevens, T. J. Hoffman, K. Stano, R. Klossner, M. C. Scott, W. Krause, L. I. Clarke and R. E. Gorga, "Fabrication and characterization of electrospun chitosan nanofibers formed via templating with polyethylene oxide," Biomacromolecules, 9, 2523 (2009).
  99. J. M. Deitzel, J. D. Kleinmeyer, J. K. Hirvonen and N. C. B. Tan, "Controlled deposition of electrospun poly(ethylene oxide) fibers," Polymer, 42, 8163 (2001). https://doi.org/10.1016/S0032-3861(01)00336-6
  100. M. Ignatova, N. Manolova, N. Markova and I. Rashkov, "Electrospun non-woven nanofibrous hybrid mats based on chitosan and PLA for wound-dressing applications," Macromol. Bioscience, 9, 102 (2009). https://doi.org/10.1002/mabi.200800189
  101. S. S. Said, O. M. El-Halfawy, H. M. El-Gowelli, A. K. Aloufy, N. A. Boraei and L. K. El- Khordagui, "Bioburden-responsive antimicrobial PLGA ultrafine fibers for wound healing," Eur. J. Pharm. Biopharm., 80, 85 (2012). https://doi.org/10.1016/j.ejpb.2011.08.007
  102. F. Yang, R. Murugan, S. Wang and S. Ramakrishna, "Electrospinning of nano/micro scale poly (L-lactic acid) aligned fibers and their potential in neural tissue engineering," Biomaterials, 26, 2603 (2005). https://doi.org/10.1016/j.biomaterials.2004.06.051
  103. Z. Karami, I. Rezaeian, P. Zahe, "Preparation and performance evaluations of electrospun poly(${\varepsilon}$-caprolactone), poly(lactic acid), and their hybrid (50/50) nanofibrous mats containing thymol as an herbal drug for effective wound healing," J. Appl. Polym. Sci.,129, 756 (2013). https://doi.org/10.1002/app.38683
  104. M. Gumusxderelio lu, S. Dalklrano lu, R. S. T. Aydln and S. Cakmak, "A novel dermal substitute based on biofunctionalized electrospun PCL nanofibrous matrix," J. Biomed. Mater. Res., Part A, 98, 461 (2011).
  105. M. Jannesari, J. Varshosaz, M. Morshed and M. Zamani, "Composite poly(vinyl alcohol) /poly (vinyl acetate) electrospun nanofibrous mats as novel wound dressing matrix for controlled release of drugs," Int. J. Nanomed., 6, 993 (2011).
  106. Y. Zhang, H. Ouyang, C. T. Lim, S. Ramakrishna and Z.-M. Huang, "Electrospinning of gelatin fibers and gelatin/PCL composite fibrous scaffolds", J. Biomed. Mater. Res., Part B, 72, 156 (2005).
  107. M. Konishi, Y. Tabata, M. Kariya, H. Hosseinkhani, A. Suzuki, K. Fukuhara, M. Mandai, A. Takakura, S. Fujii, "In vivo anti-tumor effect of dual release of cisplatin and adriamycin from biodegradable gelatin hydrogel," J. Control. Rel., 103, 7 (2005). https://doi.org/10.1016/j.jconrel.2004.11.014
  108. L. Wei, C. H. Cai, J. P. Lin, T. Chen, "Dual-drug delivery system based on hydrogel/micelle Composites," Biomaterials, 30, 2606 (2009). https://doi.org/10.1016/j.biomaterials.2009.01.006
  109. L. E. Claes, "Mechanical characterization of biodegradable implants," Clinical Mater., 10, 416 (1992).
  110. C. Xu, F. Xu, B. Wang, and T. J. Lu, "Electrospinning of poly (ethylene-co-vinyl alcohol) nanofibres encapsulated with Ag nanoparticles for skin wound healing," J. Nanomaterials, 2011, 2011, Article ID 201834, 7 pages http://dx.doi.org/10.1155/2011/201834.
  111. Y. R. Yun, H. W. Kim, and J. H. Jang, "Application of Growth factors in Tissue regeneration," Biomaterial Research, 17, 133 (2013).
  112. A. Atala and R. Lanza, "Principles of regerative medicine," Academic Press, New York, 2007.
  113. Y. V. Ioannis, "Regenerative medicine", Springer Verlag, New York, 2005.
  114. X. Fang and D. H. Reneker, "DNA fibers by electrospinning," J. Macromo. Sci. Phys. B 36, 169 (1997). https://doi.org/10.1080/00222349708220422
  115. G. S. Ashcroft, S. J. Mills, "Androgen receptor-mediated inhibition of cutaneous wound Healing," J. Clin. Invest., 110, 615 (2002). https://doi.org/10.1172/JCI0215704
  116. R. R. Chen, D. J. Mooney, "Polymeric growth factor delivery strategies for tissue engineering," Pharm, Res., 20, 1103 (2003).
  117. C. Chong, Y. Wang, P. K. M. Maitz, U. Simanainen, Z. Li, "Electrospun scaffold loaded with anti-androgen receptor compound for accelerating wound healing," Burns and Trauma, 1, 95 (2013). https://doi.org/10.4103/2321-3868.118935
  118. H. Jia, G. Zhu, B. Vugrinovich, W. Kataphinan, D. H. Reneker, and P. Wang, "Enzyme- carrying polymeric nanofibers prepared via electrospinning for use as unique biocatalysts" Biotechnol. Prog., 18, 1027 (2002). https://doi.org/10.1021/bp020042m
  119. J. Zeng, A. Aigner, F. Czubayko, T. Kissel, J. H. Wandorff, and A. Greiner, "Poly(vinyl alcohol) nanofibers by electrospinning as a protein delivery system and the retardation of enzyme release by additional polymer coatings," Biomacromolecules, 6, 1484 (2005). https://doi.org/10.1021/bm0492576
  120. C. P. Barnes, S. A. Sell, E. D. Boland, D. G. Simpson, and G. L. Bowling, "Nanofiber technology: Designing the next generation of tissue engineering scaffolds," Adv. Drug Del. Rev., 59, 1413 (2007). https://doi.org/10.1016/j.addr.2007.04.022
  121. D. Liang, B. S. Hsiao, and B. Chu, "Functional electrospun nanofibrous scaffolds for biomedical applications," Adv. Drug Del. Rev., 59, 1392 (2007). https://doi.org/10.1016/j.addr.2007.04.021
  122. Q. P. Pham, U. Sharma, and A. G. Mikos, "Electrospinning of polymeric nanofibers for tissue engineering applications: a review," Tissue Eng., 12, 1197 (2006). https://doi.org/10.1089/ten.2006.12.1197
  123. Z. Ma, M. Kotaki, R. Inai, and S. Ramakrishna, "Potential of nanofiber matrix as tissue- engineering scaffolds," Tissue Eng., 11, 101 (2005). https://doi.org/10.1089/ten.2005.11.101
  124. H. Yoshimoto, Y. M. Shin, H. Terai, and J. P. Vacanti, "A biodegradable nanofiber scaffold by electrospinning and its potential for bone tissue engineering," Biomaterials, 24, 2077 (2003). https://doi.org/10.1016/S0142-9612(02)00635-X
  125. A. S. Badami, M. R. Kreke, M. S. Thompson, J. S. Riffle, and A. S. Goldstein, "Effect of fiber diameter on spreading, proliferation, and differentiation of osteoblastic cells on electrospun poly(lactic acid)," Biomaterials, 27, 596 (2006). https://doi.org/10.1016/j.biomaterials.2005.05.084
  126. K. Sombatmankhong, N. Sanchavanakit, P. Pavasant, and P. Supaphol, "Bone scaffolds from electrospun fiber mats of poly(3-hydroxybutyrate), poly(3-hydroxybutyrate-co- 3-hydroxyvalerate) and their blend," Polymer, 48, 1419 (2007). https://doi.org/10.1016/j.polymer.2007.01.014
  127. W. Meng, Z. C. Xing, K. H. Jung, S. Y. Kim, J. Yuan, I. K. Kang, S. C. Yoon, and H. I. Shin, "Synthesis of gelatin-containing PHBV nanofiber mats for biomedical application," J. Mater. Sci.: Mater. Med., 19, 2799 (2008). https://doi.org/10.1007/s10856-007-3356-3
  128. W. Meng, S. Y. Kim, J. Yuan, J. C. Kim, O. H. Kwon, N. Kawazoe, G. Chen, Y. Ito, and I. K. Kang, "Electrospun PHBV/collagen composite nanofibrous scaffolds for tissue Engineering," J. Biomater. Sci. Polymer Ed., 18, 81 (2007). https://doi.org/10.1163/156856207779146114
  129. N. S. Binulala, Amrita Natarajana, D. Menona, V. K. Bhaskaranb, U. Monya & S. V. Naira, "PCL-gelatin composite nanofibers electrospun using diluted acetic acid-ethyl acetate solvent system for stem cell-based bone tissue engineering," J. Biomater. Sci., Polym. Edi., 25, 325 (2014). https://doi.org/10.1080/09205063.2013.859872
  130. H. W. Kim, H. S. Yu, and H. H. Lee, "Nanofibrous matrices of poly (lactic acid) and gelatin polymeric blends for the improvement of cellular responses," J. Biomed. Mater. Res. Part A, 87A, 25 (2007).
  131. J. Lee, H. S. Yu, S. J. Hong, I. Jeong, J. H. Jang, and H. W. Kim, "Nanofibrous membrane of collagen-poly(caprolactone) for cell growth and tissue regeneration," J. Mater. Sci. Mater. Med., 9, 1927 (2009).
  132. C. Li, C. Vepari, H. J. Jin, H. J. Kim, and D. L. Kaplan, "Electrospun silk-BMP-2 scaffolds for bone tissue engineering," Biomaterials, 27, 3115 (2006). https://doi.org/10.1016/j.biomaterials.2006.01.022
  133. E. Kitazono, H. Kaneko, T. Miyoshi, and K. Miyamoto, "Tissue engineering using Nanofiber," J. Synth. Org. Chem. Jpn., 62, 514 (2004). https://doi.org/10.5059/yukigoseikyokaishi.62.514