
 대한임베디드공학회논문지 제 9권 제 4호 2014년 8월 205

ⓒ IEMEK J. Embed. Sys. Appl. 2014 Aug.: 9(4) 205-210
ISSN : 1975-5066
http://dx.doi.org/10.14372/IEMEK.2014.9.4.205

Effect of ASLR on Memory Duplicate Ratio in

Cache-based Virtual Machine Live Migration

Guangyong Piao, Youngsup Oh, Baegjae Sung, Chanik Park*

Abstract : Cache based live migration method utilizes a cache, which is accessible to both side

(remote and local), to reduce the virtual machine migration time, by transferring only irredundant

data. However, address space layout randomization (ASLR) is proved to reduce the memory

duplicate ratio between targeted migration memory and the migration cache. In this pager, we

analyzed the behavior of ASLR to find out how it changes the physical memory contents of

virtual machines. We found that among six virtual memory regions, only the modification to stack

influences the page-level memory duplicate ratio. Experiments showed that: (1) the ASLR does

not shift the heap region in sub-page level; (2) the stack reduces the duplicate page size among

VMs which performed input replay around 40MB, when ASLR was enabled; (3) the size of

memory pages, which can be reconstructed from the fresh booted up state, also reduces by

about 60MB by ASLR. With those observations, when applying cache-based migration method, we

can omit the stack region. While for other five regions, even a coarse page-level redundancy

data detecting method can figure out most of the duplicate memory contents.

Keywords : ASLR, Live migration, Memory, Duplication, Desktop as a service

*Corresponding Author(cipark@postech.ac.kr)

Received: 3 Feb. 2014, Revised: 18 Mar. 2014,

Accepted: 30 Apr. 2014.

G.Y. Piao, Y.S. Oh, B.J. Sung, C.I. Park:

POSTECH

※ This work was supported by the National

Research Foundation of Korea(NRF) grant

funded by the Korea government(MEST) (No.

2011-0016972).

Ⅰ. INTRODUCTION

Reducing the time of desktop virtual

machine (VM) migration is very important in

many scenarios, especially in cloud-service

industry. In the case of desktop as a service

(DaaS), desktop VM should be migrated

efficiently to a data center near the customer

or directly to the desktop the customer

currently using, to improve the user

experience (Fig.1) [1]. Besides, we also can

perform server maintenance, load balancing,

recovery and energy saving operations without

service disruption [2, 3]. Ample research has

tried to reduce the total migration time,

because the contents of memory pages would

become dirty when the migration process takes

long time, and transferring those dirty pages

would consume extra network and computing

resources.

Fig. 1 Desktop as a service environment

206 Effect of ASLR on Memory Duplicate Ratio in Cache-based Virtual Machine Live...

 One of the efficient migration methods is

reducing the VM migration time by utilizing a

pre-defined migrating cache or freshly booted

up memory state [4, 5]. Even the destination

side does not have the preloaded cache, many

memory pages among VMs running in

destination side are duplicate with the source

side VM's memory pages, so those duplicate

pages can be used by migration cache.

However, a security mechanism, Address Space

Layout Randomization (ASLR) which is

implemented in most operating systems (OS),

modifies the virtual memory space layouts, and

this modification reduces the memory duplicate

ratio between two desktop VMs running

identical OS by 10-20% [6, 7].

In this work, we analyzed the ASLR more

deeply to learn how and why it influences the

duplicate memory ratio among VMs. By

analyzing ASLR code and performing

experiments, we understood the behavior of

the ASLR precisely, and propose possibilities

to improve the migration speed.

The rest of the paper is organized as

follows. Section II introduces the background

of ASLR, Section III explains the detailed

behavior of ASLR by implementing a probe

code and code-level analysis. Section IV

presents experimental results which prove the

behavior of ASLR. Finally, Section V gives a

brief conclusion and outlines our future work.

Ⅱ. BACKGROUND

Cache-based live migration method is an

efficient way to improve the performance of

VM live migration [4, 5]. The cache could be

a package of frequently used binary files, a

memory state of previous memory or the

memory pages of destination host. Comparing

the page-level hash value between the cache

and target migrating memory is the simplest

and most efficient duplicate data detecting

method. While ASLR is proved to reduce the

data duplicate ratio among VMs running

identical OS [6, 7].

The ASLR technique had been applied to

almost every latest version of OS (for

Windows from Vista [8], for Linux from kernel

version 2.6.12) to improve the security level.

In traditional design of OS, the layout of virtual

address space is unique for every process. In

such a scenario, an attacker can easily guess

the virtual space layout, by implementing a

simple malicious code. Return-to-libc attack

[9] is a representative security attack which

exploits the weakness of traditional OS. With

the help of ASLR, virtual space layout of

processes changed entirely, even when the

same process runs for second time. We

observed that ASLR mainly shifts some

sensitive regions, and for non-sensitive regions

like data and bss segments, the ASLR never

rearrange the virtual space layout. There is

only a special case about read-only code

segment. The layout of code segment would be

changed by ASLR, only when the process has

independently applied PAX patch or adopted

Position Independent Executable (PIE)

technique. But there are few programs written

with this special technique. So in this paper,

we consider only three sensitive virtual

memory regions, heap, mmap and stack.

Ⅲ. EFFECT OF ASLR TO MEMORY SPACE

1. Modifications to Heap

Heap defines the virtual memory region

which can be dynamically allocated or freed by

a process using system calls. Because heap

randomization had been adopted from later

version of ASLR, in current version of Linux

kernel, the heap randomization process can be

controlled independently, unlike the space

randomization processes in other memory

regions. When ASLR is enabled, the kernel

code executes an additional randomization

function randomize_range(), with the original

brk_start as the first parameter and brk_start

+ 0x2000000 as the second parameter. As a

 대한임베디드공학회논문지 제 9권 제 4호 2014년 8월 207

result, this function shifts the heap start point

to a random space within 32MB virtual memory

region with period of 4KB. Our monitor

process showed that except this difference, the

later malloc() functions perform as the same as

ASLR disabled case.

2. Modifications to Mmap

Mmap region is used to map device files or

shared libraries to virtual memory space of a

process. In the virtual memory space layout,

the address of the mmap base is just under

the stack region. So in the Linux kernel, the

mmap base is calculated by the maximum end

point of the stack minus a random value (8

bits in 32-bit system or 24 bits in 64-bit

system), and then aligned by page size. We

traced the address of shared libraries from the

maps information from proc directory,

extracted the contents of shared libraries with

ASLR enabled and disabled, and then compared

those two contents. As for all mapped files,

the contents between ASLR-enabled and

ASLR-disabled cases were the same.

3. Modifications to Stack

The stack is the most sensitive region of

process virtual memory space. The stack

stores all of the local variables and return

addresses of function, so only a small

modification to this region could cause fatal

memory leak and application collapse. The

ASLR rearranges the stack layout much more

complexly than the previous two regions. At

first, the process copies the necessary

argument and environment strings into the

stack. This process is similar to the ASLR-

disabled case. Then the randomize_stack_top

function randomly sets the stack top address

in an area of 8-MB virtual space, it then

aligned by one page. Finally, arch_align_stack()

function additionally decreases the stack start

address with a random value in a range of

8KB aligned by 16 byte. With this mechanism

the start point of stack has 1,048,576 possible

(a)ASLR disabled (b)ASLR enabled

Fig. 2 Address space layout of process with

and without ASLR (after ASLR enabled the

stack top is shifted by sub-page size)

positions, so attackers cannot guess the

address space of stack region.

When ASLR turned off, the heap start

address points to the end of BSS, the stack

top starts from end of kernel space

(0xC0000000), and mmap just followed by

stack. All start points of the three memory

regions are aligned by a page size (Fig. 2-a).

Otherwise, in ASLR enabled case, all start

points of mmap, heap and stack can be

changed. For mmap and heap the start points

are aligned by a page size, but for stack, it

additionally shifted by a randomized sub-page

level size (Fig. 2-b).

Ⅳ. EVALUATION

1. Environment

Our host machine has 12 Intel Xeon

E5-2530 CPUs, 48 GB of RAM and a 4-TB

disk, which runs KVM 1.2.0 on 64-bit 12.04

OS. Each guest had been assigned to one

vCPU, 2 GB memory and 20GB virtual storage

and runs 64 bit 12.04 OS. To simulate the real

desktop environment, we applied a desktop

workload, which randomly selected one of

three tasks; these include editing libreoffice or

viewing PDF files, playing local video streams,

and searching random amount of web pages.

208 Effect of ASLR on Memory Duplicate Ratio in Cache-based Virtual Machine Live...

Total

Size(MB)

Duplicate

ratio

Disable ASLR 640 64.46%

ASLR without

heap random
639 54.20%

ASLR with heap

random
640 53.70%

Table 1. page-level duplicate contents among

fresh booted up VMs

2. Effect on Freshly Booted up Memory

In the first experiment, we booted up VM

three times, once in each of the three

scenarios: (1) disable ASLR; (2) enable ASLR

without heap randomization; (3) enable ASLR

with heap randomization. After fetching three

sets of memory snapshots, we utilized the

SHA-1 hash value of every page to calculate

the page-level memory duplicate ratio in each

case, so we obtained three comparisons

(between 1 and 2, 1 and 3, 2 and 3) for each

set.

We detected a slight difference between

enable ASLR with heap randomization and

without randomization case (Table 1). This

means that the heap randomization does not

influence the number of duplicate pages among

VMs memory. However, the duplicate data

ratio increases significantly when we disabled

the ASLR. Based on the observation in section

2, we conclude that most of different pages

among those 60 MB different pages are stacks.

3. Effect on Long-lived Memory

The previous experiment proved that the

heap randomization does not influence the

page-level duplicate ratio among VMs, so in

this experiment we only consider the ASLR

with heap randomization as well as ASLR

disabled cases. For each set, after freshly

booted up, we performed input replay to each

VM, and calculated the page-level duplicate

data among each set (the average value of

three times).

Fig. 3 Size of duplicate pages among identical

VMs perform input replay. (_l_: ASLR with heap

randomization, __¡__: ASLR disabled)

In the first half hour, the size of duplicate

pages increased rapidly (Fig. 3). This was

caused by loading the code and data of

workload into page cache. From the half hour

to 8th hour, the duplicate page size of

ASLR-disabled case always larger than the

ASLR-enabled case around 60MB. Although,

this gap was reduced to 20MB after 7.5 hours

later, it increased again around 40MB. We

consider the reasons for this phenomenon as

follows. When the VM runs for long time, the

allocated physical page would be a dirty one,

which had been used before. Although in ASLR

disabled case, the stack start from the start

point of one page, if the stack does not

overflow one page size or ended up in

non-end position of a page, those stack pages

could not be detected.

4. Duplicate Ratio with Fresh Booted-up State

Freshly booted up memory contains a

considerable number of duplicate data with

memory state of long lived VMs. So with

page-level hash value comparison, memory

pages which duplicate with fresh booted up

state can be rebuilt independently on

destination side. The purpose of this

experiment is observing how ASLR influences

that duplicate ratio.

In this experiment we booted up VM and

saved the memory state after login, for each

set. If the memory snapshots were taken

 대한임베디드공학회논문지 제 9권 제 4호 2014년 8월 209

Fig. 4 Size of duplicate pages between long lived

VM memory and freshly booted up memory state.

(‐l‐: ASLR with heap randomization, ╌¡╌: ASLR

disabled)

contiguously from that moment, the result

would contain duplicate page-level contents of

stack. To eliminate that effect, we booted up a

new VM, and took snapshots.

We observed that the duplicate memory size

between long lived VM and freshly booted up

memory states decreases with time elapse. But

from second hour, the size did not change too

much (only reduced by 6MB during 8hours) in

both case. Besides, the difference of duplicate

memory size between ASLR enabled and

disabled case also remains stable (Fig. 4).

V. CONCLUSION

We analyzed the behavior of ASLR, which

influences the performance of cache-based live

migration. To understand the behavior of ASLR

correctly, we analyzed the ASLR code, and

conducted experiments to prove how it

influences the page-level memory duplicate

ratio between two freshly booted-up virtual

machines (VMs) running identical workloads.

With code level analysis, we found that, among

six virtual memory regions, only the stack

decreased the memory page-level memory

duplicate ratio. However, in most cases, the

stack occupies only a small portion of the

entire memory region. This means that ASLR

does not much influence the page-level

duplicate ratio among operating systems. This

result is very valuable, because when live

migrate a VM with a cache, we need not

perform data deduplication to the stack region.

But for the other five memory regions, even a

coarse granularity duplicate data detecting

method can correctly figure out most of the

duplicate memory content.

References

[1] A. Kochut, H. Shaikh. "Desktop to cloud

transformation planning," Proceedings of IEEE

International Symposium on IPDPS, 2009.

[2] T. Das, P. Padala, V.N. Padmanabhan, R.

Ramjee, K.G. Shin, "LiteGreen: Saving Energy

in Networked Desktops Using Virtualization,"

Proceedings of USENIX Annual Technical

Conference, 2010.

[3] J. Reich, M. Goraczko, A. Kansal, J. Padhye,

"Sleepless in Seattle No Longer." Proceedings

of USENIX Annual Technical Conference,

2010.

[4] R. Chandra, N. Zeldovich, C. Sapuntzakis, L.S.

Lam, "The Collective: A Cache-Based

Systems Management Architecture,"

Proceedings of USENIX Symposium on

Networked Systems Design and

Implementation, 2005.

[5] C. Clark, K. Fraser, S. Hand, J. Hanseny, E.

July, C. Limpach, I. Pratt, A. Warfield, "Live

Migration of Virtual Machines," Proceedings

of USENIX Symposium of on Networked

Systems Design and Implementation, 2005.

[6] A. Rai, R. Ramjee, A. Anand, "MiG: Efficient

Migration of Desktop VMs using Semantic

Compression," Proceesing of USENIX Annual

Technical Conference, 2013.

[7] S. Barker, T. Wood, P. Shenoy, R. Sitaraman,

"An Empirical Study of Memory Sharing in

Virtual Machines," Proceesings of USENIX

Annual Technical Conference, 2012.

[8] O. Whitehouse, “An Analysis of Address

Space Layout Randomization on Windows

Vista”, Symantec Advanced Threat Research,

2007.

210 Effect of ASLR on Memory Duplicate Ratio in Cache-based Virtual Machine Live...

[9] H. Shacham, M. Page, B. Pfaff, E.J. Goh, N.

Modadugu, D. Boneh, “On the Effectiveness of

Address-space Randomization,” Proceedings of

ACM Conference on Computer and Comm.

Security, pp. 298-307, 2004.

Biographies

Guangyong Piao
2010: Received B.S. de-

gree in department of

computer science and

technology from JiLin

University, China.

Current: M.S. candidate in the department of

computer science and engineering in Pohang

University of Science and Technology.

Research Interests: include operating

system, system virtualization.

Email: tmipyiong@postech.ac.kr

Youngsup Oh
2011: Received B.S. de-

gree in department of

computer science and

engineering from Soongsil

University.

Current: Ph.D. candidate in department of

computer science and technology in Pohang

University of Science and Technology.

Reseach Interests: include operating

system, system virtualization, system

security.

Email: youngsup@postech.ac.kr

Baegjae Sung
2006: Received a B.S.

degree in department of

computer science and en-

gineering from Inha

University.

2009: Received a M.S. degree in department

of computer science and engineering from

Pohang University of Science and

Technology.

Current: Ph.D. candidate in Department of

Computer Science and Engineering in Pohang

University of Science and Technology.

Research Interests: include storage

system, web service, operating system.

Email: jays@postech.ac.kr

Chanik Park
1983: Received a B.S.

degree in department of

electronics and engineer-

ing from seoul national

university.

1985: Received a M.S. degree in department

of electronics and electrical engineering from

KAIST.

1988: Received a Ph.D. degree in deparment

of electronics and electrical engineering from

KAIST.

Current: Professor in the department of

computer science and engineering in Pohang

University of Science and Technology.

Research Interests: include operating

system, storage system, embedded

system, system virtualization, system

security.

Email: cipark@postech.ac.kr

