DOI QR코드

DOI QR Code

Indacaterol Inhibits Tumor Cell Invasiveness and MMP-9 Expression by Suppressing IKK/NF-κB Activation

  • Received : 2014.04.02
  • Accepted : 2014.07.15
  • Published : 2014.08.31

Abstract

The ${\beta}_2$ adrenergic receptor (ADRB2) is a G protein-coupled transmembrane receptor expressed in the human respiratory tract and widely recognized as a pharmacological target for treatments of asthma and chronic obstructive pulmonary disorder (COPD). Although a number of ADRB2 agonists have been developed for use in asthma therapy, indacaterol is the only ultra-long-acting inhaled ${\beta}_2$-agonist (LABA) approved by the FDA for relieving the symptoms in COPD patients. The precise molecular mechanism underlying the pharmacological effect of indacaterol, however, remains unclear. Here, we show that ${\beta}$-arrestin-2 mediates the internalization of ADRB2 following indacaterol treatment. Moreover, we demonstrate that indacaterol significantly inhibits tumor necrosis factor-${\alpha}$ (TNF-${\alpha}$)-induced NF-${\kappa}B$ activity by reducing levels of both phosphorylated-IKK and -$I{\kappa}B{\alpha}$, thereby decreasing NF-${\kappa}B$ nuclear translocation and the expression of MMP-9, an NF-${\kappa}B$ target gene. Subsequently, we show that indacaterol significantly inhibits TNF-${\alpha}$/NF-${\kappa}B$-induced cell invasiveness and migration in a human cancer cell line. In conclusion, we propose that indacaterol may inhibit NF-${\kappa}B$ activity in a ${\beta}$-arrestin2-dependent manner, preventing further lung damage and improving lung function in COPD patients.

Keywords

References

  1. Ball, D.I., Brittain, R.T., Coleman, R.A., Denyer, L.H., Jack, D., Johnson, M., Lunts, L.H., Nials, A.T., Sheldrick, K.E., and Skidmore, I.F. (1991). Salmeterol, a novel, long-acting beta 2-adrenoceptor agonist: characterization of pharmacological activity in vitro and in vivo. Br. J. Pharmacol. 104, 665-671. https://doi.org/10.1111/j.1476-5381.1991.tb12486.x
  2. Barnes, P.J., and Pride, N.B. (1983). Dose-response curves to inhaled beta-adrenoceptor agonists in normal and asthmatic subjects. Br. J. Clin. Pharmacol. 15, 677-682. https://doi.org/10.1111/j.1365-2125.1983.tb01549.x
  3. Catley, M.C., Chivers, J.E., Holden, N.S., Barnes, P.J., and Newton, R. (2005). Validation of IKK beta as therapeutic target in airway inflammatory disease by adenoviral-mediated delivery of dominant-negative IKK beta to pulmonary epithelial cells. Br. J. Pharmacol. 145, 114-122. https://doi.org/10.1038/sj.bjp.0706170
  4. Chetty, A., Cao, G.J., Severgnini, M., Simon, A., Warburton, R., and Nielsen, H.C. (2008). Role of matrix metalloprotease-9 in hyperoxic injury in developing lung. Am. J. Physiol. Lung Cell. Mol. Physiol. 295, L584-592. https://doi.org/10.1152/ajplung.00441.2007
  5. Churg, A., Wang, R.D., Tai, H., Wang, X., Xie, C., and Wright, J.L. (2004). Tumor necrosis factor-alpha drives 70% of cigarette smoke-induced emphysema in the mouse. Am. J. Respir. Crit. Care Med. 170, 492-498. https://doi.org/10.1164/rccm.200404-511OC
  6. Churg, A., Wang, R., Wang, X., Onnervik, P.O., Thim, K., and Wright, J.L. (2007). Effect of an MMP-9/MMP-12 inhibitor on smokeinduced emphysema and airway remodelling in guinea pigs. Thorax 62, 706-713. https://doi.org/10.1136/thx.2006.068353
  7. Cullum, V.A., Farmer, J.B., Jack, D., and Levy, G.P. (1969). Salbutamol: a new, selective beta-adrenoceptive receptor stimulant. Br. J. Pharmacol. 35, 141-151. https://doi.org/10.1111/j.1476-5381.1969.tb07975.x
  8. Donohue, J.F., Fogarty, C., Lotvall, J., Mahler, D.A., Worth, H., Yorgancioglu, A., Iqbal, A., Swales, J., Owen, R., Higgins, M., et al. (2010). Once-daily bronchodilators for chronic obstructive pulmonary disease: indacaterol versus tiotropium. Am. J. Respir. Crit. Care Med. 182, 155-162. https://doi.org/10.1164/rccm.200910-1500OC
  9. Edwards, M.R., Bartlett, N.W., Clarke, D., Birrell, M., Belvisi, M., and Johnston, S.L. (2009). Targeting the NF-kappaB pathway in asthma and chronic obstructive pulmonary disease. Pharmacol. Ther. 121, 1-13. https://doi.org/10.1016/j.pharmthera.2008.09.003
  10. Finlay, G.A., Russell, K.J., McMahon, K.J., D'Arcy E, M., Masterson, J.B., FitzGerald, M.X., and O'Connor, C.M. (1997). Elevated levels of matrix metalloproteinases in bronchoalveolar lavage fluid of emphysematous patients. Thorax 52, 502-506. https://doi.org/10.1136/thx.52.6.502
  11. Gao, H., Sun, Y., Wu, Y., Luan, B., Wang, Y., Qu, B., and Pei, G. (2004). Identification of beta-arrestin2 as a G protein-coupled receptor-stimulated regulator of NF-kappaB pathways. Mol. Cell 14, 303-317. https://doi.org/10.1016/S1097-2765(04)00216-3
  12. Ghosh, S., May, M.J., and Kopp, E.B. (1998). NF-kappa B and Rel proteins: evolutionarily conserved mediators of immune responses. Ann. Rev. Immunol. 16, 225-260. https://doi.org/10.1146/annurev.immunol.16.1.225
  13. Hanania, N.A., Chapman, K.R., and Kesten, S. (1995). Adverse effects of inhaled corticosteroids. Am. J. Med. 98, 196-208. https://doi.org/10.1016/S0002-9343(99)80404-5
  14. Johnson, M. (2006) Molecular mechanisms of beta(2)-adrenergic receptor function, response, and regulation. J. Allergy Clin. Immunol. 117, 18-24; quiz 25. https://doi.org/10.1016/j.jaci.2005.11.012
  15. Klein, G., Vellenga, E., Fraaije, M.W., Kamps, W.A., and de Bont, E.S. (2004). The possible role of matrix metalloproteinase (MMP)-2 and MMP-9 in cancer, e.g. acute leukemia. Crit. Rev. Oncol. Hematol. 50, 87-100. https://doi.org/10.1016/j.critrevonc.2003.09.001
  16. Lee, S.U., Choi, Y.H., Kim, Y.S., Park, S.J., Kwak, H.B., Min, Y.K., Kim, H.N., Lim, K.E., Choi, J.Y., Rhee, M., et al. (2010). Physcion-8-O-beta-D-glucopyranoside enhances the commitment of mouse mesenchymal progenitors into osteoblasts and their differentiation: Possible involvement of signaling pathways to activate BMP gene expression. J. Cell. Biochem. 109, 1148-1157.
  17. Lee, S.U., In, H.J., Kwon, M.S., Park, B.O., Jo, M., Kim, M.O., Cho, S., Lee, S., Lee, H.J., Kwak, Y.S., et al. (2013). beta-Arrestin 2 mediates G protein-coupled receptor 43 signals to nuclear Factor-kappaB. Biol. Pharm. Bull. 36, 1754-1759. https://doi.org/10.1248/bpb.b13-00312
  18. Lefkowitz, R.J., and Shenoy, S.K. (2005). Transduction of receptor signals by beta-arrestins. Science 308, 512-517. https://doi.org/10.1126/science.1109237
  19. Ling, H., Zhang, Y., Ng, K.Y., and Chew, E.H. (2011). Pachymic acid impairs breast cancer cell invasion by suppressing nuclear factor-kappaB-dependent matrix metalloproteinase-9 expression. Breast Cancer Res. Treat. 126, 609-620. https://doi.org/10.1007/s10549-010-0929-5
  20. Loganathan, R.S., Stover, D.E., Shi, W., and Venkatraman, E. (2006). Prevalence of COPD in women compared to men around the time of diagnosis of primary lung cancer. Chest 129, 1305-1312. https://doi.org/10.1378/chest.129.5.1305
  21. Lora, J.M., Zhang, D.M., Liao, S.M., Burwell, T., King, A.M., Barker, P.A., Singh, L., Keaveney, M., Morgenstern, J., Gutierrez-Ramos, J.C., et al. (2005). Tumor necrosis factor-alpha triggers mucus production in airway epithelium through an IkappaB kinase betadependent mechanism. J. Biol. Chem. 280, 36510-36517. https://doi.org/10.1074/jbc.M507977200
  22. Luan, B., Zhang, Z., Wu, Y., Kang, J., and Pei, G. (2005). Betaarrestin2 functions as a phosphorylation-regulated suppressor of UV-induced NF-kappaB activation. EMBO J. 24, 4237-4246. https://doi.org/10.1038/sj.emboj.7600882
  23. Lundblad, L.K., Thompson-Figueroa, J., Leclair, T., Sullivan, M.J., Poynter, M.E., Irvin, C.G., and Bates, J.H. (2005). Tumor necrosis factor-alpha overexpression in lung disease: a single cause behind a complex phenotype. Am. J. Respir. Crit. Care Med. 171, 1363-1370. https://doi.org/10.1164/rccm.200410-1349OC
  24. Luttrell, L.M., and Lefkowitz, R.J. (2002). The role of beta-arrestins in the termination and transduction of G-protein-coupled receptor signals. J. Cell Sci. 115, 455-465.
  25. Matera, M.G., Calzetta, L., and Cazzola, M. (2010). TNF-alpha inhibitors in asthma and COPD: we must not throw the baby out with the bath water. Pulm. Pharmacol. Ther. 23, 121-128. https://doi.org/10.1016/j.pupt.2009.10.007
  26. Muroski, M.E., Roycik, M.D., Newcomer, R.G., Van den Steen, P.E., Opdenakker, G., Monroe, H.R., Sahab, Z.J., and Sang, Q.X. (2008). Matrix metalloproteinase-9/gelatinase B is a putative the rapeutic target of chronic obstructive pulmonary disease and multiple sclerosis. Curr. Pharm. Biotechnol. 9, 34-46. https://doi.org/10.2174/138920108783497631
  27. Naline, E., Trifilieff, A., Fairhurst, R.A., Advenier, C., and Molimard, M. (2007). Effect of indacaterol, a novel long-acting beta2-agonist, on isolated human bronchi. Eur. Respir. J. 29, 575-581. https://doi.org/10.1183/09031936.00032806
  28. Oh, D.Y., Talukdar, S., Bae, E.J., Imamura, T., Morinaga, H., Fan, W., Li, P., Lu, W.J., Watkins, S.M., and Olefsky, J.M. (2010). GPR120 is an omega-3 fatty acid receptor mediating potent antiinflammatory and insulin-sensitizing effects. Cell 142, 687-698. https://doi.org/10.1016/j.cell.2010.07.041
  29. Sekine, Y., Katsura, H., Koh, E., Hiroshima, K., and Fujisawa, T. (2012). Early detection of COPD is important for lung cancer surveillance. Eur. Respir. J. 39, 1230-1240. https://doi.org/10.1183/09031936.00126011
  30. Shenoy, S.K., and Lefkowitz, R.J. (2003). Multifaceted roles of betaarrestins in the regulation of seven-membrane-spanning receptor trafficking and signalling. Biochem. J. 375, 503-515. https://doi.org/10.1042/BJ20031076
  31. Tashkin, D.P., and Ferguson, G.T. (2013). Combination bronchodilator therapy in the management of chronic obstructive pulmonary disease. Respir. Res. 14, 49. https://doi.org/10.1186/1465-9921-14-49
  32. van der Molen, T., Postma, D.S., Turner, M.O., Jong, B.M., Malo, J.L., Chapman, K., Grossman, R., de Graaff, C.S., Riemersma, R.A., and Sears, M.R. (1997). Effects of the long acting beta agonist formoterol on asthma control in asthmatic patients using inhaled corticosteroids. The Netherlands and Canadian formoterol study investigators. Thorax 52, 535-539. https://doi.org/10.1136/thx.52.6.535
  33. Vestbo, J., Prescott, E., and Lange, P. (1996). Association of chronic mucus hypersecretion with FEV1 decline and chronic obstructive pulmonary disease morbidity. Copenhagen City heart study group. Am. J. Respir. Crit. Care Med. 153, 1530-1535. https://doi.org/10.1164/ajrccm.153.5.8630597
  34. Watanabe, T., Jono, H., Han, J., Lim, D.J., and Li, J.D. (2004). Synergistic activation of NF-kappaB by nontypeable Haemophilus influenzae and tumor necrosis factor alpha. Proc. Natl. Acad. Sci. USA 101, 3563-3568. https://doi.org/10.1073/pnas.0400557101
  35. Welte, T. (2009). Optimising treatment for COPD--new strategies for combination therapy. Int. J. Clin. Pract. 63, 1136-1149. https://doi.org/10.1111/j.1742-1241.2009.02139.x
  36. Witherow, D.S., Garrison, T.R., Miller, W.E., and Lefkowitz, R.J. (2004). beta-Arrestin inhibits NF-kappaB activity by means of its interaction with the NF-kappaB inhibitor IkappaBalpha. Proc. Natl. Acad. Sci. USA 101, 8603-8607. https://doi.org/10.1073/pnas.0402851101
  37. Yorgancioglu, A. (2012). Indacaterol in chronic obstructive pulmonary disease: an update for clinicians. Ther. Adv. Chronic. Dis. 3, 25-36. https://doi.org/10.1177/2040622311426204

Cited by

  1. Verproside inhibits TNF-α-induced MUC5AC expression through suppression of the TNF-α/NF-κB pathway in human airway epithelial cells vol.77, 2016, https://doi.org/10.1016/j.cyto.2015.08.262
  2. Galangin and Kaempferol Suppress Phorbol-12-Myristate-13-Acetate-Induced Matrix Metalloproteinase-9 Expression in Human Fibrosarcoma HT-1080 Cells vol.38, pp.2, 2015, https://doi.org/10.14348/molcells.2015.2229
  3. The potential anticancer effect of beta-blockers and the genetic variations involved in the interindividual difference vol.17, pp.1, 2016, https://doi.org/10.2217/pgs.15.152
  4. EGCG inhibited bladder cancer SW780 cell proliferation and migration both in vitro and in vivo via down-regulation of NF-κB and MMP-9 vol.41, 2017, https://doi.org/10.1016/j.jnutbio.2016.12.004
  5. Kindlin-2 promotes invasiveness of prostate cancer cells via NF-κB-dependent upregulation of matrix metalloproteinases vol.576, pp.1, 2016, https://doi.org/10.1016/j.gene.2015.11.005
  6. Extracellular polyamines-induced proliferation and migration of cancer cells by ODC, SSAT, and Akt1-mediated pathway vol.28, pp.4, 2017, https://doi.org/10.1097/CAD.0000000000000465
  7. Piscroside C, a novel iridoid glycoside isolated from Pseudolysimachion rotundum var. subinegrum suppresses airway inflammation induced by cigarette smoke vol.170, 2015, https://doi.org/10.1016/j.jep.2015.04.043
  8. β2-Adrenoceptor is involved in connective tissue remodeling in regenerating muscles by decreasing the activity of MMP-9 vol.365, pp.1, 2016, https://doi.org/10.1007/s00441-016-2373-2
  9. Triptolide Inhibits Invasion and Tumorigenesis of Hepatocellular Carcinoma MHCC-97H Cells Through NF-κB Signaling vol.22, 2016, https://doi.org/10.12659/MSM.898801
  10. Dipterocarpus obtusifolius attenuates the effects of lipopolysaccharide-induced inflammatory response in RAW264.7 macrophages vol.16, pp.6, 2017, https://doi.org/10.3892/mmr.2017.7655
  11. Tc17/IL-17A Up-Regulated the Expression of MMP-9 via NF-κB Pathway in Nasal Epithelial Cells of Patients With Chronic Rhinosinusitis vol.9, pp.1664-3224, 2018, https://doi.org/10.3389/fimmu.2018.02121
  12. TIPE2 acts as a biomarker for tumor aggressiveness and suppresses cell invasiveness in papillary thyroid cancer (PTC) vol.8, pp.1, 2018, https://doi.org/10.1186/s13578-018-0247-x
  13. Synergistic Inhibition of Thalidomide and Icotinib on Human Non-Small Cell Lung Carcinomas Through ERK and AKT Signaling vol.24, pp.None, 2014, https://doi.org/10.12659/msm.909977
  14. Piscroside C inhibits TNF-α/NF-κB pathway by the suppression of PKCδ activity for TNF-RSC formation in human airway epithelial cells vol.40, pp.None, 2018, https://doi.org/10.1016/j.phymed.2018.01.012
  15. The role and mechanism of β-arrestins in cancer invasion and metastasis (Review) vol.41, pp.2, 2014, https://doi.org/10.3892/ijmm.2017.3288
  16. Casticin Improves Respiratory Dysfunction and Attenuates Oxidative Stress and Inflammation via Inhibition of NF-ĸB in a Chronic Obstructive Pulmonary Disease Model of Chronic Cigarette Smoke-Exposed vol.14, pp.None, 2014, https://doi.org/10.2147/dddt.s277126
  17. Transforming Growth Factor β Inhibits MUC5AC Expression by Smad3/HDAC2 Complex Formation and NF-κB Deacetylation at K310 in NCI-H292 Cells vol.44, pp.1, 2014, https://doi.org/10.14348/molcells.2020.0188
  18. β-Arrestin1 Promotes Colorectal Cancer Metastasis Through GSK-3β/β-Catenin Signaling- Mediated Epithelial-to-Mesenchymal Transition vol.9, pp.None, 2014, https://doi.org/10.3389/fcell.2021.650067