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PACKING DIMENSIONS OF GENERALIZED

RANDOM MORAN SETS

Xin Tong, Yue-li Yu, and Xiao-jun Zhao

Abstract. We consider random fractal sets with random recursive con-
structions in which the contracting vectors have different distributions at
different stages. We prove that the random fractal associated with such
construction has a constant packing dimension almost surely and give an
explicit formula to determine it.

1. Introduction

There has been considerable interest in fractals, both in their occurrence in
the sciences, and in their mathematical theory. A wide class of fractal sets are
generated by recursive constructions or iterated function systems (IFS). The
recursive construction was first introduced by Moran in [17] and systematically
studied by Hutchinson [11].

In the 1980s, Falconer [3], Graf [6], Mauldin and Williams [16] investigated
random fractal sets by randomizing each step in Moran’s deterministic con-
structions. They studied the geometric properties of such random constructions
and obtained the Hausdorff dimensions of such sets. Later Graf, Mauldin and
Williams [16], Arbeiter and Patzschke [2], Olsen [18] considered the random
measures associated with the random recursive constructions. Similar random
recursive constructions and random sets were studied by Pesin and Weiss [22],
Kifer [13, 14] employing the thermodynamic formalism for random subshifts
of finite type. All the papers mentioned above work in the settings when the
probability distributions of contracting vectors at each stage of the construction
are independent and identically distributed. Liu, Wen and Wu [15] generalized
the works of Falconer [3], Graf [6], Mauldin and Williams [16] to the case that
at each stage, the contracting vectors were not identically distributed. They
proved that the random fractal associated with such construction has a constant
Hausdorff dimension almost surely and gave an explicit formula to determine
it. For more results, see [1, 5, 7, 8, 9, 10, 12, 19, 20, 21].
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The main aim of this paper is to determine the packing dimensions of the
generalized random Moran sets in [15].

Before introducing the generalized random construction, we give some no-
tation.

Let {nk, k ≥ 1} be a sequence of positive integers with nk ≥ 2 for any k ≥ 1.
For any k ≥ 1, let

Ik =
{
σ = (σ1, σ2, . . . , σk) : 1 ≤ σj ≤ nj , 1 ≤ j ≤ k

}
,

I∞ =
{
σ = (σ1, σ2, . . . , σk, . . .) : 1 ≤ σj ≤ nj , 1 ≤ j < ∞

}
,

I∗ =

∞⋃

k=1

Ik.

Besides, we give other notation:

(1) σ|k = (σ1, σ2, . . . , σk) where σ ∈ I∞ or σ ∈ Il for l ≥ k,
(2) σ ∗ τ = (σ1, σ2, . . . , σk, τ1, τ2, . . . , τl) for σ = (σ1, σ2, . . . , σk) ∈ Ik and

τ = (τ1, τ2, . . . , τl) ∈ Il,
(3) |σ| denotes the length of σ ∈ I∗. That is |σ| = k if σ ∈ Ik. Let I0

denote the empty set ∅.

Now we consider the following generalized random construction.
Let J be a nonempty compact subset of Rd such that int(J ) = J , where

int(J ) and J denote the interior and the closure of J respectively. Let {nk}k≥1

be a sequence of positive integers satisfying nk ≥ 2 for any k ≥ 1.
Let (Ω,F , P ) be a complete probability space and J = {Jσ : σ ∈ I∗} be a

family of random compact subsets of Rd satisfying:

(1) J∅(ω) = J for almost all ω ∈ Ω; for any σ ∈ I∗ and almost all ω ∈ Ω,
Jσ(ω) is geometrically similar to J .

(2) For almost all ω ∈ Ω and for every k ≥ 0, if σ ∈ Ik, then Jσ∗1(ω),
Jσ∗2(ω), . . . , Jσ∗nk+1

(ω) is a sequence of non-overlapping subsets of
Jσ(ω). (E and F non-overlapping means int(E ) ∩ int(F ) = ∅.)

(3) Random vectors {(Tσ∗1, . . . , Tσ∗n|σ|+1
) : σ ∈ I∗} are independent. For

every k ≥ 0, the random vectors {(Tσ∗1, . . . , Tσ∗nk+1
) : σ ∈ Ik} have

the same distribution, where Tσ∗j(ω) is the ratio of the diameter of
Jσ∗j(ω) to the diameter of Jσ(ω), 1 ≤ j ≤ n|σ|+1.

(4) There exists δ1 > 0 such that for almost all ω ∈ Ω, for every k ≥ 0 and
σ ∈ Ik, Tσ∗j(ω) ≥ δ1 for any 1 ≤ j ≤ nk+1.

The family J is called a generalized random Moran construction. Let

K(ω) =

∞⋂

k=0

⋃

σ∈Ik

Jσ(ω),

and the set K(ω) is called the generalized random Moran set associated with
the family J .
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For any k ≥ 1, let sk satisfy the equation

E

∑

σ∈Ik

k∏

i=1

T sk
σ|i = 1,(1)

then sk is called the k-th predimension of the random set K(ω).
Let

s∗ = lim inf
k→∞

sk, s∗ = lim sup
k→∞

sk.

Liu, Wen and Wu [15] showed that for almost all ω ∈ Ω,

dimH K(ω) = s∗.

In this paper, we obtain the following result:

Theorem 1.1. For almost all ω ∈ Ω,

dimP K(ω) = s∗.

In [15], the dimensional result was obtained by defining a martingale as-
sociated with the geometric construction and choosing a suitable parameter.
The proof of the results in [15] is based on the existence of the moments of all
orders and a common bound of these moments. In this paper, in order to get
the packing dimensions of the generalized random Moran sets, we shall use the
negative moment instead, which is considerably different from [15].

The paper is organized as follows. We give some notation and preliminaries
in Section 2. In Section 3, we first define the so-called Jr-packing and J-packing
dimensions for the generalized Moran sets. And we prove that the upper J-
packing dimensions are equivalent to upper box dimensions. We prove the main
theorem in the last section.

2. Preliminaries

First, we recall the definitions of packing measure and packing dimension.
Let E be a non-empty bounded subset of Rd. For δ > 0, a δ-packing of E is

defined as a finite or countable collection of disjoint balls {Bi} of radii at most
δ with centers in E. For any s > 0, we first define Ps

0,δ by

Ps
0,δ(E) = sup

{ ∞∑

i=1

|Bi|
s : {Bi} is a δ-packing of E

}
,

where |Bi| denotes the diameter of Bi. Then Ps
0,δ(E) is non-increasing as δ

decreases by the definition of Ps
0,δ(E). We take the limit

Ps
0 (E) = lim

δ→0
Ps
0,δ(E).

The s-dimensional packing measure of E is defined by

Ps(E) = inf
{ ∞∑

i=1

Ps
0(Ei) : E ⊂

∞⋃

i=1

Ei

}
.
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The packing dimension of E is defined by

dimP (E) = inf
{
s : Ps(E) = 0

}
= sup

{
s : Ps(E) = ∞

}
.

Next, we recall the definition of upper Minkowski(or box) dimension.
Let Nr(E) be the smallest number of closed balls of radii r that can cover

E. The upper box dimensions of E are defined by

dimB(E) = lim sup
r→0

logNr(E)

− log r
.

An equivalent definition of upper box dimension of a rather different nature
involves the d-dimensional volume of the r-neighbourhood or r-parallel body
Er of E, given by

Er =
{
x ∈ Rd : |x− y| ≤ r for some y in E

}
.

Then for E ⊂ R
d,

dimB(E) = d− lim inf
r→0

logL d(Er)

log r
,

where L d is the d-dimensional volume or d-dimensional Lebesgue measure.
By Corollary 3.9 in [4], the packing dimension of a set is equal to the upper

boxing dimension of it in the following situation.

Lemma 2.1. Let E be a non-empty compact subset of Rd. If for an arbitrary

open set V we have dimB(E) = dimB(E ∩ V ), then dimP (E) = dimB(E)

3. Equivalent definition

In this section, we shall give an equivalent definition of the upper box dimen-
sion for the generalized random Moran sets. We first consider the determin-
istic Moran sets with the same constructions. Now let us recall the definition
of Moran sets with deterministic constructions. Let J be a nonempty com-

pact subset of Rd such that int(J ) = J . And let {nk}k≥1 be a sequence of
positive integers satisfying nk ≥ 2 for any k ≥ 1. We call the subcollection
J = {Jσ : σ ∈ I∗} of Rd a Moran construction, if

(1) J∅ = J and Jσ is geometrically similar to J .
(2) For every k ≥ 0, if σ ∈ Ik, then Jσ∗1, Jσ∗2, . . ., Jσ∗nk+1

is a sequence
of non-overlapping subsets of Jσ. (E and F non-overlapping means
int(E ) ∩ int(F ) = ∅.)

(3) For every k ≥ 0, σ ∈ Ik and 1 ≤ j ≤ nk+1, Tσ∗j is the ratio of the
diameter of Jσ∗j to the diameter of Jσ.

Let

K =

∞⋂

k=0

⋃

σ∈Ik

Jσ.
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Then the nonempty compact set K is called the generalized Moran set associ-
ated with J .

In our cases, we assume there exist 0 < δ1 < δ2 < 1 such that δ1 ≤ Tσ∗j ≤ δ2
for any σ ∈ I∗ and any 1 ≤ j ≤ n|σ|+1.

Definition 3.1. For any r > 0, let

J̃r = {Jσ : |Jσ| ≤ r < |Jσ|(|σ|−1)|, σ ∈ I∗},

and call the family J̃r a Jr-packing of K.

It is clear that J̃r is also a finite nonoverlapping r-covering of K.
For s ≥ 0, we define

Ps
J (K) = lim sup

r→0

∑

σ:Jσ∈J̃r

|Jσ|
s,(2)

and define the upper J-packing dimension

dimJ (K) = inf
{
s : Ps

J (K) = 0
}
= sup

{
s : Ps

J (K) = ∞
}
.(3)

The following propositions will show the equivalence of the upper J-packing
dimension and the upper box dimension.

Proposition 3.2. Let Mr(K) be the number of sets Jσ in J̃r. Then

dimJ (K) = lim sup
r→0

logMr(K)

− log r
.(4)

Proof. For any α > dimJ (K), by the definition of the upper J-packing dimen-
sion, we have

Pα
J (K) = lim sup

r→0

∑

σ:Jσ∈J̃r

|Jσ|
α = 0.

Since Tσ∗j ≥ δ1 for all σ ∈ I∗ and all 1 ≤ j ≤ n|σ|+1, we have |Jσ| ≥ δ1r for

any Jσ ∈ J̃r. Thus ∑

Jσ∈J̃r

|Jσ|
α ≥ Mr(K)(δ1r)

α,

which implies

lim sup
r→0

logMr(K)

− log r
≤ α.

Since α > dimJ (K) is arbitrary, it follows that

dimJ (K) ≥ lim sup
r→0

logMr(K)

− log r
.

On the other hand, for any 0 ≤ t < β < dimJ (K), we have

Pβ
J (K) = lim sup

r→0

∑

σ:Jσ∈J̃r

|Jσ|
β = ∞
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by the definition of dimJ (K). Therefore the inequality
∑

σ:Jσ∈J̃r

|Jσ|
β > 1(5)

holds for a sequence of positive real numbers r → 0. For any positive r satis-

fying (5), let nk be the number of sets Jσ ∈ J̃r with δk+1
2 < |Jσ| ≤ δk2 . Then

by (5),
∑

k≥0

nkδ
kβ
2 ≥

∑

σ:Jσ∈J̃r

|Jσ|
β > 1.

We claim that there is a positive integer kr satisfying

nkr
≥ δ−krt

2 (1− δ
β−t
2 ).

Otherwise nkδ
kt
2 < 1− δ

β−t
2 for all k ≥ 0, then

1 <
∑

k≥0

nkδ
kβ
2 =

∑

k≥0

nkδ
kt
2 δ

k(β−t)
2 ≤

∑

k≥0

(1− δ
β−t
2 )δ

k(β−t)
2 = 1,

which is a contradiction. For any Jσ ∈ J̃r with δk+1
2 < |Jσ| ≤ δk2 , we have

Jσ ∈ J̃δk
2
since Tσ ≤ δ2. So

M
δ
kr

2

(K) ≥ nkr
≥ δ−krt

2 (1− δ
β−t
2 ).

Since nkr
≥ 1, there exists at least one set Jσ ∈ J̃r with δkr+1

2 < |Jσ| ≤ δkr

2 .

So δkr+1
2 < |Jσ| ≤ r, which implies kr → ∞ as r → 0. Thus

lim sup
r→0

logMr(K)

− log r
≥ lim sup

kr→∞

logM
δ
kr

2

(K)

− log δkr

2

≥ lim sup
kr→∞

log δ−krt
2 (1− δ

β−t
2 )

− log δkr

2

= t.

Since t < dimJ (K) is arbitrary, it follows that

dimJ (K) ≤ lim sup
r→0

logMr(K)

− log r
.

�

Proposition 3.3. Let Mr(K) be the number of sets Jσ in J̃r. Then

lim sup
r→0

logMr(K)

− log r
= dimB(K).

Proof. By the definition of upper box dimension, it is sufficient to show that

lim sup
r→0

logMr(K)

− log r
= d− lim inf

r→0

logL d(Kr)

log r
,(6)

where Kr is the r-parallel body of K and L d denote the Lebesgue measure. It
is clear that

⋃
Jσ∈J̃r

Jσ ⊂ Kr. Note that Jσ is geometrically similar to J . We
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obtain L d(Jσ) ≥
(δ1r)

d
L

d(J)
|J|d

for any Jσ ∈ J̃r, since |Jσ| ≥ δ1r for any Jσ ∈ J̃r.

Write Cd =
δd1L

d(J)
|J|d . Hence

L
d(Kr) ≥ L

d(
⋃

Jσ∈J̃r

Jσ) ≥ Mr(K)rdCd.

Thus

lim sup
r→0

logMr(K)

− log r
≤ d− lim inf

r→0

logL d(Kr)

log r
.(7)

On the other hand, for any Jσ ∈ J̃r, let

Gσ =
{
x : d(x, Jσ) ≤ r

}
.

Since ⋃

σ:Jσ∈J̃r

Jσ ⊃ K,

then
⋃

σ:Jσ∈J̃r
Gσ ⊃ Kr. Since intJ = J 6= ∅, J contains a ball with a positive

radius. Since δ1r ≤ |Jσ| < r and Jσ is geometrically similar to J , there exists
an integer N1 ≥ 1 such that N1L

d(Jσ) ≥ L d(Gσ) for any r > 0 and for any

Jσ ∈ J̃r. Since L d(Jσ) ≤
rdL

d(J)
|J|d

, we have

L
d(Kr) ≤ L

d(
⋃

σ:Jσ∈J̃r

Gσ) ≤ Mr(K)rdC
′

d,

where C
′

d = N1L
d(J)

|J|d . Thus

lim sup
r→0

logMr(K)

− log r
≥ d− lim inf

r→0

logL d(Kr)

log r
.(8)

As a consequence of (7) and (8), the equality (6) must hold. �

From Propositions 3.2 and 3.3, we have the following proposition.

Proposition 3.4.

dimJ (K) = dimB(K).

From now on, to obtain the upper box dimension of the generalized random
Moran set, it is equivalent to compute the upper J-packing dimension of K(ω).

4. Proof of Theorem A

Without loss of generality, in what follows, we always assume |J | = 1. To
prove Theorem A, we first list the following two facts (for its proof see Lemma
4.3 and Lemma 4.4 in [15]).

Lemma 4.1. Let J be a random Moran construction. Then there exists a

positive constant M > 0 depending on δ1 such that nk ≤ M for any k ≥ 1.
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Lemma 4.2. Let J be a random Moran construction. Then there exists a

positive real number δ2 < 1 such that for any k ≥ 0 and σ ∈ Ik, we have

max
1≤i≤nk+1

Tσ∗i ≤ δ2 a.e.

Next, we shall prove that

dimJ (K(ω)) = s∗ a.e.,(9)

where E
∑

σ∈Ik
|Jσ|sk = 1 and s∗ = lim supk→∞ sk.

Proposition 4.3 (Upper bound estimation of dimJ (K(ω))). Let J be a gen-

eralized random Moran construction and K(ω) a generalized random Moran set

associated with J . Then for almost all ω ∈ Ω,

dimJ (K(ω)) ≤ s∗.

Proof. It suffices to prove that for any t > s∗, dimJ (K(ω)) ≤ t for almost
all ω ∈ Ω. By contradiction, suppose that there exists a subset A of Ω with
P (A) > 0 such that dimJ(K(ω)) > t for any ω ∈ A. Take a real number
s∗ < γ < t. By the definition of s∗, there exists k0 ∈ N such that for any
k > k0, we have γ > sk. Hence E[

∑
τ∈Ik

|Jτ (ω)|γ ] < 1 for any k > k0. On the
other hand, by the definition of the upper J-packing dimension,

Pt
J (K(ω)) = lim sup

r→0

∑

σ:Jσ(ω)∈J̃r(ω)

|Jσ(ω)|
t > 1

for all ω ∈ A. By the definition of δ1, |Jσ(ω)| ≥ δm1 for any positive integer m

and any σ ∈ Im. Then for any r < δm1 and any Jσ(ω) ∈ J̃r(ω), we have

Jσ(ω) ∈
⋃

k≥m

⋃

τ∈Ik

Jτ (ω)

since |Jσ(ω)| ≤ r. Therefore for any r < δm1 ,
∑

σ:Jσ(ω)∈J̃r(ω)

|Jσ(ω)|
t ≤

∑

k≥m

∑

τ∈Ik

|Jτ (ω)|
t,

and hence

1 < lim sup
r→0

∑

σ:Jσ(ω)∈J̃r(ω)

|Jσ(ω)|
t ≤ lim sup

m→∞

∑

k≥m

∑

τ∈Ik

|Jτ (ω)|
t(10)

for any ω ∈ A. Write Qm(ω) =
∑

k≥m

∑
τ∈Ik

|Jτ (ω)|t. By Lemma 4.2, we have

E[Qm] =
∑

k≥m

E[
∑

τ∈Ik

|Jτ |
γ |Jτ |

t−γ ] ≤
∑

k≥m

δ
k(t−γ)
2 E[

∑

τ∈Ik

|Jτ |
r] ≤

∑

k≥m

δ
k(t−γ)
2 ,

for any m ≥ k0. Since 0 < δ2 < 1 and Qm(ω) is non-increasing, we can obtain
that

lim
m→∞

E[Qm(ω)] = 0,

which is a contradiction to (10).
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Thus for any t > s∗ and almost all ω ∈ Ω, we have Pt
J (K(ω)) < ∞.

Therefore

dimJ (K(ω)) ≤ s∗ a.s. �

From now on, we will estimate the lower bound of dimB(K(ω)). The key
point is to prove that for any α < s∗,

P{ω : lim sup
m→∞

∑

σ∈Im

|Jσ(ω)|
α > 0} = 1.

First, we give the following two simple facts which will be used later.

Lemma 4.4. For any x ∈ [0, 1), log(1− x) ≤ −x.

Lemma 4.5. Let 0 < α < s∗ and ε = s∗−α
2 . Let 0 < δ2 < 1 be defined as in

Lemma 4.2. Then we have e−x ≤ 1− δε2x when x is small enough.

The following proposition is an estimate of negative moments.

Proposition 4.6. Let 0 < α < s∗ and ε = s∗−α
2 . Let 0 < δ2 < 1 be defined as

in Lemma 4.2 and u > 0 be small enough. Let

Rm+1(u) = E(e
−u

∑
σ∈Im+1

|Jσ|
α

).

Then

Rm+1(u) ≤ Rm(uδε2Am+1),

where Am+1 = E(
∑nm+1

i=1 Tα
σ∗i) for any σ ∈ Im.

Proof. Since the random vectors {(Tσ∗1, . . . , Tσ∗nm+1
) : σ ∈ Im} have the same

distribution, E(
∑nm+1

i=1 Tα
σ∗i) is a constant for any σ ∈ Im. Since random vectors

{(Tσ∗1, . . . , Tσ∗n|σ|+1
) : σ ∈ I∗} are independent,

Rm+1(u) = E(e
−u

∑
σ∈Im+1

|Jσ|
α

) = E(e−u
∑

σ∈Im
(|Jσ|

α
∑nm+1

i=1
Tα

σ∗i))

= E(
∏

σ∈Im

e−u|Jσ|
α
∑nm+1

i=1
Tα

σ∗i) =
∏

σ∈Im

E(e−u|Jσ |
α
∑nm+1

i=1
Tα

σ∗i).

By Lemma 4.1 and Lemma 4.2, there exists a constant C such that
n|σ|+1∑
i=1

Tα
σ∗i <

C for any σ ∈ I∗ almost surely. Since |Jσ| ≤ 1 for any σ ∈ I∗, then we have,
when u > 0 is small enough,

0 < u|Jσ|
α

n|σ|+1∑

i=1

Tα
σ∗i ≤ Cu

for any σ ∈ I∗ almost surely. And then by Lemma 4.5 and the independence
of random vectors, for any σ ∈ Im,

E(e−u|Jσ|
α
∑nm+1

i=1
Tα

σ∗i) ≤ E(1− δε2u|Jσ|
α

nm+1∑

i=1

Tα
σ∗i)
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= 1− δε2uE(|Jσ|
α

nm+1∑

i=1

Tα
σ∗i)

= 1− δε2uE(|Jσ|
α)Am+1

= E(1− δε2u|Jσ|
αAm+1),

where Am+1 = E(
∑nm+1

i=1 Tα
σ∗i). Hence, by the independence of random vectors

and Lemma 4.4,

Rm+1(u) ≤
∏

σ∈Im

E(1 − δε2u|Jσ|
αAm+1)

= E
[ ∏

σ∈Im

(1− δε2u|Jσ|
αAm+1)

]

= E
[
elog

∏
σ∈Im

(1−δε2u|Jσ|
αAm+1)

]

= E
[
e
∑

σ∈Im
log(1−δε2u|Jσ|

αAm+1)
]

≤ E
(
e−

∑
σ∈Im

δε2u|Jσ|
αAm+1

)

= Rm(uδε2Am+1),

which completes the proof. �

Remark that from the proof of Proposition 4.6, we know that if u is small
than an absolute constant, then the proposition follows for any m ≥ 1.

Proposition 4.7. Let 0 < α < s∗. And let

W (ω) = lim sup
m→∞

∑

σ∈Im

|Jσ(ω)|
α.

Then

P{W > 0} = 1.

Proof. For any 0 < α < s∗, let ε = s∗−α
2 . By the definition of s∗, there exists

a subsequence {mk} ↑ ∞ such that smk
→ s∗ and 0 < α < smk

< α+ ε for all
k = 0, 1, 2, . . .. Moreover,

E(
∑

σ∈Im
k

|Jσ|
α+ε) > E(

∑

σ∈Im
k

|Jσ|
sm

k ) = 1.(11)

Using Proposition 4.6, for any u > 0 small enough,

Rmk
(u) ≤ Rmk−1(uδ

ε
2Amk

) ≤ Rmk−2(uδ
2ε
2 Amk

Amk−1) ≤ · · ·

≤ Rm0
(uδ

(mk−m0)ε
2 Amk

· · ·Am0+1)

= E
[
exp{−uδ

(mk−m0)ε
2 Amk

· · ·Am0+1

∑

σ∈Im0

|Jσ|
α}

]
.
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Since random vectors {(Tσ∗1, . . . , Tσ∗n|σ|+1
) : σ ∈ I∗} are independent and

{(Tσ∗1, . . . , Tσ∗nk+1
) : σ ∈ Ik} have the same distribution for every k ≥ 0,

Amk
· · ·Am0+1 =

E
∑

σ∈Im
k

|Jσ|α

E
∑

σ∈Im0

|Jσ|α
.

Thus

Rmk
(u) ≤ E

[
exp{−uδ

(mk−m0)ε
2 Amk

· · ·Am0+1

∑

σ∈Im0

|Jσ|
α}

]

= E
[
exp{−uδ

(mk−m0)ε
2

E
∑

σ∈Im
k

|Jσ|α

E
∑

σ∈Im0

|Jσ|α

∑

σ∈Im0

|Jσ|
α}

]
.

By Lemma 4.2 and the inequality (11),

E

∑

σ∈Im
k

|Jσ|
α = E(

∑

σ∈Im
k

|Jσ|
α+ǫ|Jσ|

−ǫ) ≥ δ−mkǫ
2 E

∑

σ∈Im
k

|Jσ|
α+ǫ ≥ δ−mkǫ

2 .

We obtain

Rmk
(u) < E

[
exp{−uδ

(mk−m0)ε
2 δ−mkε

2

∑
σ∈Im0

|Jσ|
α

E
∑

σ∈Im0

|Jσ|α
}
]

= E
[
exp{−uδ−m0ǫ

2

∑
σ∈Im0

|Jσ|α

E
∑

σ∈Im0

|Jσ|α
}
]
.

By Lemma 4.1 and Lemma 4.2, we have

2m0δm0α
1 ≤

∑

σ∈Im0

|Jσ|
α ≤ Mm0δm0α

2 .

Thus

Rmk
(u) ≤ E

[
exp{−uδ−m0ǫ

2

∑
σ∈Im0

|Jσ|α

E
∑

σ∈Im0

|Jσ|α
}
]

≤ E
[
exp{−uδ−m0ε

2

2m0δm0α
1

Mm0δm0α
2

}
]
= exp{−uδ−m0ε

2

2m0δm0α
1

Mm0δm0α
2

} < 1.

Therefore, for any u > 0,

P{W = 0} ≤ E(e−uW ) = E(e
−u lim sup

m→∞

∑
σ∈Im

|Jσ|
α

)

= E(lim inf
m→∞

e−u
∑

σ∈Im
|Jσ|

α

)

≤ lim inf
m→∞

E(e−u
∑

σ∈Im
|Jσ|

α

)

= lim inf
m→∞

Rm(u) ≤ lim inf
k→∞

Rmk
(u) < 1.

This implies that P{W > 0} > 0. By Kolmogorov 0-1 law, we obtain that
P{W > 0} = 1. �
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Proposition 4.8 (Lower bound estimation of dimJ (K(ω))). Let J be a gen-

eralized Moran construction and K(ω) be a generalized Moran set associated

with J . Then for almost all ω ∈ Ω,

dimJ (K(ω)) ≥ s∗.

Proof. It suffices to prove that for any 0 < β < s∗, dimJ (K(ω)) ≥ β for almost
all ω ∈ Ω. By Proposition 4.7, for any 0 < β < α < s∗,

lim sup
m→∞

∑

σ∈Im

|Jσ(ω)|
α > 0(12)

for almost all ω ∈ Ω. We shall prove that for almost all ω ∈ Ω,

dimJ (K(ω)) ≥ β.

In fact, for those ω ∈ Ω satisfying the inequality (12), define

c(ω) = min{lim sup
m→∞

∑

σ∈Im

|Jσ(ω)|
α, 1}.

Then there exist infinitely many integers m such that

∑

σ∈Im

|Jσ(ω)|
α >

c(ω)

2
.(13)

The following proofs are similar to that in the second part of Proposition 3.2.
Let nk be the number of σ ∈ Im such that δk+1

2 < |Jσ(ω)| ≤ δk2 . We claim that

there exists some integer km such that nkm
≥ δ

−kmβ
2 (1−δ

α−β
2 ) c(ω)

2 . Otherwise,

nk < δ
−kβ
2 (1− δ

α−β
2 ) c(ω)

2 for any k. Then

∑

σ∈Im

|Jσ(ω)|
α ≤

∑

k≥0

δ
−kβ
2 (1− δ

α−β
2 )

c(ω)

2
δkα2 =

c(ω)

2
,

a contradiction to (13). Let M
δ
km

2

(K(ω)) denote the number of the sets Jσ ∈

J̃
δ
km

2

. Then

M
δ
km

2

(K(ω)) ≥ nkm
≥ δ

−kmβ
2 (1− δ

α−β
2 )

c(ω)

2
,

which implies dimJ (K(ω)) ≥ β. Thus the conclusion follows. �

From Proposition 3.4, Proposition 4.3 and Proposition 4.8, we have

dimB(K(ω)) = dimJ (K(ω)) = s∗ a.e.(14)

By the equality (14), to prove Theorem A, it suffices to prove the following
proposition.

Proposition 4.9. Let J be a generalized Moran construction and K(ω) be a

generalized Moran set associated with J . Then for almost all ω ∈ Ω,

dimP (K(ω)) = dimB(K(ω)).
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Proof. First, we shall prove that for any σ ∈ I∗,

dimB(Jσ(ω) ∩K(ω)) = dimJ (Jσ(ω) ∩K(ω)) = s∗ a.e.

Since Jσ(ω) ∩ K(ω) is also a generalized random Moran set, by the equality
(14),

dimB(Jσ(ω) ∩K(ω)) = dimJ (Jσ(ω) ∩K(ω)) = s′ a.e.,

where s′k satisfies the equation

E

∑

τ∈Ik

|σ|+k∏

i=|σ|+1

T
s′
k

στ |i = 1,(15)

and s′ = lim supk→∞ s′k. Remark that δ1 ≤ Tτ ≤ δ2 for any ∅ 6= τ ∈ I∗ and
that for each k ≥ 0, the vectors {(Tσ∗1, . . . , Tσ∗nk+1

) : σ ∈ Ik} have the same
distribution. Thus comparing the equations (1) and (15) yields s′ = s∗. So
there exists a set A ⊂ Ω with P (A) = 1 such that for any ω ∈ A and any
σ ∈ I∗,

dimB(Jσ(ω) ∩K(ω)) = dimB(K(ω)).

For any ω ∈ A and any open set V satisfying V ∩K(ω) 6= ∅, there exists some
σ ∈ I∗ such that Jσ(ω) ⊂ V ∩K(ω). Then

dimB(K(ω)) = dimB(Jσ(ω) ∩K(ω)) ≤ dimB(V ∩K(ω)) ≤ dimB(K(ω)),

thus dimB(K(ω)) = dimB(V ∩K(ω)). So by Lemma 2.1, the conclusion follows.
�

Theorem A follows from Proposition 4.9 and the equality (14).
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