References
- E. Alkan, M. S. Xiong, and A. Zaharescu, A bias phenomenon on the behavior of Dedekind sums, Math. Res. Lett. 15 (2008), no. 5, 1039-1052. https://doi.org/10.4310/MRL.2008.v15.n5.a16
- E. Alkan, M. S. Xiong, and A. Zaharescu, Quotients of values of the Dedekind eta function, Math. Ann. 342 (2008), no. 1, 157-176. https://doi.org/10.1007/s00208-008-0228-1
- J. Athreya and Y. Cheung, A Poincare section for horocycle flow on the space of lattices, to appear in Int. Math. Res. Not. IMRN 2013.
- F. P. Boca, C. Cobeli, and A. Zaharescu, Distribution of lattice points visible from the origin, Comm. Math. Phys. 213 (2000), no. 2, 433-470. https://doi.org/10.1007/s002200000250
- F. P. Boca, C. Cobeli, and A. Zaharescu, A conjecture of R. R. Hall on Farey points, J. Reine Angew. Math. 535 (2001), 207-236.
- F. P. Boca and A. Zaharescu, Farey fractions and two-dimensional tori, Noncommutative geometry and number theory, 57-77, Aspects Math., E37, Vieweg, Wiesbaden, 2006.
- P. Erdos, A note on Farey series, Quart. J. Math., Oxford Ser. 14 (1943), 82-85.
- G. H. Hardy, J. E. Littlewood, and G. Polya, Inequalities, Cambridge Univ. Press, Cambridge, 1988, Reprint of the 1952 edition. Cambridge Mathematical Library, xii+324pp.
- G. H. Hardy and E. M. Wright, An Introduction to the Theory of Numbers, Clarendon Press, Oxford, 1938.
- A. E. Mayer, A mean value theorem concerning Farey series, Quart. J. Math., Oxford Ser. 13 (1942), 48-57.
- A. E. Mayer, On neighbours of higher degree in Farey series, Quart. J. Math., Oxford Ser. 13 (1942), 185-192.
- A. Zaharescu, The Mayer-Erdos phenomenon, Indag. Math. (N.S.) 17 (2006), no. 1, 147-156. https://doi.org/10.1016/S0019-3577(06)80012-1