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CHARACTERIZATION OF RATIONAL TIME-FREQUENCY

MULTI-WINDOW GABOR FRAMES AND THEIR DUALS

Yan Zhang and Yun-Zhang Li

Abstract. This paper addresses multi-window Gabor frames with ratio-
nal time-frequency product. Such issue was considered by Zibulski and
Zeevi (Appl. Comput. Harmonic Anal. 4 (1997), 188–221) in terms of
Zak transform matrix (so-called Zibuski-Zeevi matrix), and by many oth-
ers. In this paper, we introduce of a new Zak transform matrix. It is
different from Zibulski-Zeevi matrix, but more direct and convenient for
our purpose. Using such Zak transform matrix we characterize rational
time-frequency multi-window Gabor frames (Riesz bases and orthonor-

mal bases), and Gabor duals for a Gabor frame. Some examples are also
provided, which show that our Zak transform matrix method is efficient.

1. Introduction

In the past more than twenty years, the theory of frames has seen great
achievements. The notion of frame was first introduced by Duffin and Scha-
effer in [18], which is a generalization of basis. And in contrast to a basis, a
frame may be “overcomplete”. A basis in a Hilbert space allows one to repre-
sent each element in a unique way. An overcomplete frame also allows one to
represent each element via it, but the representation is not unique. This prop-
erty plays a significant role in mathematics, signal transmission and modern
time-frequency analysis. Gabor frames are a class of important frames among
all kinds of frames. Given x0, w0 ∈ R, define the modulation operator Ew0 and
the translation operator Tx0 on L2(R) respectively by

Ew0f(·) = e2πiw0·f(·) and Tx0f(·) = f(· − x0)

for f ∈ L2(R). Let L be a positive integer, and let a = (a1, a2, . . . , aL),
b = (b1, b2, . . . , bL) with al, bl > 0 for 1 ≤ l ≤ L. In this paper, we investigate
Gabor systems G(g, a, b) of the form

(1.1) G(g, a, b) = {EmblTnal
gl : m, n ∈ Z, 1 ≤ l ≤ L},
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where g = (g1, g2, . . . , gL) with gl ∈ L2(R), 1 ≤ l ≤ L.
A Gabor system G(g, a, b) is called a (Gabor) frame for L2(R) if there exist

positive constants C1 and C2 such that

(1.2) C1‖f‖2 ≤
L
∑

l=1

∑

m,n∈Z

|〈f, EmblTnal
gl〉|2 ≤ C2‖f‖2

for f ∈ L2(R), where C1 and C2 are called frame bounds; called a tight frame

(Parseval frame) for L2(R) if C1 = C2 (C1 = C2 = 1) in (1.2); and called a
Bessel sequence in L2(R) with Bessel bound C2 if the right-hand side inequality
in (1.2) holds. A frame G(g, a, b) for L2(R) is said to be a Riesz basis for
L2(R) if it ceases to be a frame whenever an arbitrary element is removed, and
at this time, the frame bounds are called Riesz bounds. The Gabor system
(frame) of the form (1.1) is called a single-window Gabor system (frame) if
L = 1, and is called a multi-window Gabor system (frame) if L > 1. For two
Bessel sequencesG(g, a, b) and G(h, a, b) in L2(R) with g = (g1, g2, . . . , gL),
h = (h1, h2, . . . , hL), define Sh,g : L2(R) → L2(R) by

Sh,gf =
L
∑

l=1

∑

m,n∈Z

〈f, EmblTnal
hl〉EmblTnal

gl for f ∈ L2(R).

Then it is a bounded operator on L2(R). Let G(g, a, b) and G(h, a, b) be
both frames for L2(R). G(h, a, b) is called a dual of G(g, a, b) if Sh,gf = f

for f ∈ L2(R). It is easy to check that G(g, a, b) is also a dual of G(h, a, b)
if G(h, a, b) is a dual of G(g, a, b). So we also say G(g, a, b) and G(h, a, b)
are a pair of dual frames in this case. For two Bessel sequences G(g, a, b)
and G(h, a, b) in L2(R), if Sh,gf = f for f ∈ L2(R), then G(g, a, b) and
G(h, a, b) are a pair of dual frames by the fundamental theory of frames.

Single-windowGabor frames have been studied extensively in the past twenty
years and more ([3], [4], [8] and [9]). The theory of multi-window Gabor frame
for L2(R) was firstly studied by Zibulski and Zeevi in [21] and Zeevi, Zibul-
ski and Porat in [20]. By introduction of a Zak transform, they developed a
matrix (so-called Zibulski-Zeevi matrix) algebraic tool for multi-window Ga-
bor frames, and applied it to image processing and computer vision. Those
results indicate that the multi-window approach is efficient and superior to the
single-window one. Then many researchers studied the theory of multi-window
Gabor frames and related applications ([10]-[13], [19] and [20]). Interestingly,
these works mainly concern the case that all window functions have the same
time and frequency shifts, i.e.,

(1.3) a1 = a2 = · · · = aL and b1 = b2 = · · · = bL.

In practical problems, time and frequency shifts may vary with the windows.
Zibulski-Zeevi matrix method was also used in the study of subspace single-
window Gabor frames ([1], [5] and [6]). In [7] and [16], a different Zak transform
and Zak transform matrix from those in [20] and [21] were introduced and used
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effectively to study Gabor systems on periodic subsets of the real line, while
Zibulski-Zeevi matrix method does not work well for such Gabor systems. A
variation of the method in [7] and [16] was applied to Gabor systems on discrete
periodic sets ([14] and [15]). It was also pointed out in [20] that Zibulski-Zeevi
matrix method is not very efficient for Gabor frames G(g, a, b) of the form
(1.1) when (1.3) does not hold. The aim of this paper is to characterize Gabor
frames of the form (1.1) and their Gabor duals under the following assumptions:

Assumption 1. L is a positive integer greater than 1;

Assumption 2. b1 = b2 = · · · = bL = β, and alβ = pl

ql
with pl and ql being

relatively prime positive integers for 1 ≤ l ≤ L.

Our main novelty is to introduce a new Zak transform matrix method, and
use it to characterize Gabor frames of the form (1.1) and their Gabor duals.
Examples in Section 4 below show that such Zak transform matrix method is
more efficient than Zibulski-Zeevi matrix method when treating many rational
time-frequency multi-window Gabor frames of the form (1.1). In addition,
when a1 = a2 = · · · = aL = α and b1 = b2 = · · · = bL = β, Remark 1.2 below
shows that, using our Zak transform matrix method than Zibulski-Zeevi matrix
method, we can more easily obtain a frame (a Riesz basis, an orthonormal basis)
G(g, a, b) and its duals G(h, a, b) by designing Zak transform matrices Φg

and Φh.
We denote by p the least common multiple of pl and by q the greatest

common divisor of ql, 1 ≤ l ≤ L. Then p and q are relatively prime, and there
exist unique λ1, λ2, . . ., λL ∈ N (N denotes the set of positive integers) such

that p
q
= λlpl

ql
for 1 ≤ l ≤ L. So λlal = p

βq
for 1 ≤ l ≤ L by Assumption

2. We write α = p
βq

. The following remark tells us Assumptions 1 and 2 are

reasonable to some extent. We also remark that the restriction of “rational
time-frequency” here is for using “finite-order” Zak transform matrix-valued
functions.

Remark 1.1. Assumptions 1 and 2 are relatively general. Suppose b1, b2, . . .,
and bL are commensurable, i.e., there exist β>0 and positive integers β1, β2, . . .,
and βL such that β = βlbl for 1 ≤ l ≤ L. Observe that Z = βlZ+{0, 1, . . . , βl−
1} for each 1 ≤ l ≤ L. G(g, a, b) of the form (1.1) is a frame (a Riesz basis,
an orthonomal basis) for L2(R) if and only if

(1.4) {e2πimβ·g
(τl)
l (· − nal) : 1 ≤ l ≤ L, 0 ≤ τl ≤ βl − 1, m, n ∈ Z}

is a frame (a Riesz basis, an orthonomal basis) for L2(R), where g
(τl)
l (·) =

e2πiτlbl·gl(·). It is obvious that (1.4) satisfies Assumptions 1 and 2 with another
“L”. In particular, b1, b2, . . . , bL are commensurable if they are all rational
numbers or rational multiples of some fixed irrational number. In what follows,
unless otherwise specified, we always work under Assumptions 1 and 2.

For statement of our main results and later use, we introduce some notations
and notions. Given M ∈ N, we denote by NM the set {0, 1, . . . , M−1}, by IM
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the M ×M identity matrix (by I the identity matrix if we need not specify its
size), by xk the k-th component of x for x ∈ CM , and by ek the vector in CM

with the k-th component being 1 and the others being zero. For an arbitrary
complex matrix A, we always denote by A∗ its conjugate transpose. Given a
measurable set S in R, a collection {Sk : k ∈ Z} of measurable sets in R is
called a partition of S if

⋃

k∈Z

Sk = S and Sk ∩ Sk′ = ∅ for k 6= k′ in Z

up to a set of measure zero. For λ > 0 and measurable sets S, S′ ⊂ R, we
say S is λZ-congruent to S′ if there exists a partition {Sk : k ∈ Z} of S such
that {Sk + λk : k ∈ Z} is a partition of S′. In particular, only finitely many
Sk among Sk, k ∈ Z, are nonempty if both S and S′ are bounded in addition.
Obviously, S′ is also λZ-congruent to S if S is λZ-congruent to S′. So we
usually say S and S′ are λZ-congruent in this case. Let us recall the definition
of Zak transform in [7]. The Zak transform Zαq : L2(R) → L2

loc(R
2) is defined

by

Zαqf(t, v) =
∑

k∈Z

f(t+ kαq)e2πikv

for f ∈ L2(R). It is easy to check that Zαq has the quasi-periodicity:

(1.5) Zαqf(t+mαq, v+n) = e−2πimvZαqf(t, v) for f ∈ L2(R) and m, n ∈ Z.

Define Zαq : L2(R) → L2
loc(R

2, Cp) by

(1.6) Zαqf(t, v) =











Zαqf(t, v)
Zαqf(t+

1
β
, v)

...

Zαqf(t+
p−1
β

, v)











for f ∈ L2(R). Then we have:

Lemma 1.1 ([7, Lemma 2.1]). Zαq is a unitary operator from L2(R) onto

L2([0, αq)× [0, 1)), and Zαq is a unitary operator from L2(R) onto L2([0, 1
β
)×

[0, 1), Cp).

Definition 1.1. For g = (g1, g2, . . . , gL) with gl ∈ L2(R), we associate it with
the matrix-valued function Φg : R2 → MQ, p defined by

Φg(t, v) =











G1(t, v)
G2(t, v)

...
GL(t, v)











(1.7)
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for a.e. (t, v) ∈ R2, where Q = q
∑L

l=1 λl,

Gl(t, v) =











Gl(t, v)
Gl(t− al, v)

...
Gl(t− (λl − 1)al, v)











,

and

Gl(t, v)r,k = Zαqgl(t+
k

β
− rα, v), r ∈ Nq, k ∈ Np

for 1 ≤ l ≤ L.

Similarly, for h = (h1, h2, . . . , hL) with hl ∈ L2(R), we associate it with
Φh(t, v) as in (1.7). The main results of this paper are stated as follows.

Theorem 1.1. G(g, a, b) is a frame for L2(R) with frame bounds A, B if and

only if

βAI ≤ Φ∗
g(t, v)Φg(t, v) ≤ βBI for a.e. (t, v) ∈ [0,

1

βq
)× [0, 1).

Theorem 1.2. G(g, a, b) is a Riesz basis (an orthonormal basis) for L2(R)
with Riesz bounds A, B if and only if p = Q and

βAI ≤ Φ∗
g(t, v)Φg(t, v) ≤ βBI (Φ∗

g(t, v)Φg(t, v) = βI)

for a.e. (t, v) ∈ [0, 1
βq
)× [0, 1).

Theorem 1.3. Let G(g, a, b) be a frame for L2(R), and G(h, a, b) a Bessel

sequence in L2(R). Then G(h, a, b) is a dual of G(g, a, b) if and only if

Φ∗
g(t, v)Φh(t, v) = βI for a.e. (t, v) ∈ [0, 1

βq
)× [0, 1).

Remark 1.2. Let us make an additional assumption that

a1 = a2 = · · · = aL = α and b1 = b2 = · · · = bL = β

in Theorems 1.1-1.3. A simple computation shows that
(

[0,
1

βq
) +

k

β
− rα

)

⋂

(

[0,
1

βq
) +

k′

β
− r′α

)

= ∅

for (k, r) 6= (k′, r′) in Np × Nq, and the set
⋃

k∈Np

⋃

r∈Nq

(

[0, 1
βq
) + k

β
− rα

)

is αqZ-congruent to [0, αq). It follows that g and h are uniquely determined
by the values of Φg and Φh on [0, 1

βq
) × [0, 1) by Lemma 1.1 and the quasi-

periodicity of Zαq, and that the values taken by entries of the different position
of Φg (Φh) are unrelated when restricted on [0, 1

βq
)× [0, 1). This gives us much

freedom to obtain g and h by designing Φg and Φh. Therefore, Theorems 1.1-
1.3 provide us with a new idea for constructing Gabor frames and their duals
in addition to Zibulski-Zeevi matrix method.
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The rest of this paper is organized as follows. In Section 2, we give some
auxiliary results for later use. Based on Section 2, Section 3 is devoted to
proving Theorems 1.1-1.3. Section 4 focuses on some examples of Theorems
1.1-1.3. These general examples show that our matrix algebraic method is
efficient for dealing with many rational time-frequency multi-window Gabor
frames.

2. Some auxiliary results

This section is an auxiliary one to following sections. We start with some
lemmas and theorems.

By the quasi-periodicity of Zαq, we have:

Lemma 2.1. Let f ∈ L2(R) and x0 ∈ R. Then

Zαq (EmβTnαq+x0f) (t, v) = e2πimβte2πinvZαqf(t− x0, v) for a.e. (t, v) ∈ R
2.

Lemma 2.2. Let g = (g1, g2, . . . , gL) with gl ∈ L2(R). Then

〈f, EmβTnαq+rα+τlal
gl〉(2.1)

=

∫ 1
β

0

∫ 1

0

(

Gl(t− τlal, v)Zαqf(t, v)
)

r
e−2πimβte−2πinvdtdv

for f ∈ L2(R), 1 ≤ l ≤ L and (m, n, r, τl) ∈ Z× Z× Nq × Nλl
.

Proof. By Lemmas 1.1 and 2.1,

〈f, EmβTnαq+rα+τlal
gl〉

=

∫ 1
β

0

∫ 1

0

p−1
∑

k=0

Zαqgl(t− τlal − rα +
k

β
, v)Zαqf(t+

k

β
, v)e−2πimβte−2πinvdtdv

=

∫ 1
β

0

∫ 1

0

(

Gl(t− τlal, v)Zαqf(t, v)
)

r
e−2πimβte−2πinvdtdv

for each r ∈ Nq, τl ∈ Nλl
and 1 ≤ l ≤ L. This gives the lemma. �

Lemma 2.3. For g = (g1, g2, . . . , gL) with gl ∈ L2(R), we have

(2.2) Φg(t+
j

βq
, v) = e−2πimjvCjΦg(t, v)Dj

for a.e. (t, v) ∈ R2 and j ∈ Z with j = kjq + (mjq − rj)p, (kj , rj ,mj) ∈
Np×Nq×Z, where Dj =

(

0 e−2πivIkj
Ip−kj

0

)

, Cj = diag(C1,j, C2,j, . . . , CL,j), Cl,j
denotes the block matrix (with λl blocks) of the form diag(Cj, Cj , . . . , Cj) with

Cj =
( 0 Iq−rj

e2πivIrj 0

)

for 1 ≤ l ≤ L.
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Proof. By the same procedure as in [7, Lemma 2.6] and [15, Lemma 5], we can
prove that

Gl(t+
j

βq
, v) = e−2πimjvCjGl(t, v)Dj for (t, v) ∈ R

2.

This gives the lemma. �

Since every j ∈ Z has a unique decomposition j = kjq + (mjq − rj)p with
(kj , rj ,mj) ∈ Np×Nq×Z, as an immediate consequence of Lemma 2.3 we have:

Lemma 2.4. Let g = (g1, g2, . . . , gL) with gl ∈ L2(R), and let C be a positive

constant. Then

Φ∗
g(t, v)Φg(t, v) ≥ CI (≤ CI)

holds for a.e. (t, v) ∈ R2 if and only if it holds for a.e. (t, v) ∈ [0, 1
βq
)× [0, 1).

Definition 2.1. Given c = (c1, c2, . . . , cL) with cl ∈ l2(Z2), for each 1 ≤ l ≤
L, we associate it with a vector-valued function c(t, v) defined by

(2.3) c(t, v) =











c1(t, v)
c2(t, v)

...
cL(t, v)











for a.e. (t, v) ∈ R
2,

where

cl(t, v) =













c
(0)
l (t, v)

c
(1)
l (t, v)

...

c
(λl−1)
l (t, v)













and

c
(τl)
l (t, v) =



















∑

m,n∈Z

cl,m,nqλl+τle
2πimβte2πinv

∑

m,n∈Z

cl,m,(nq+1)λl+τle
2πimβte2πinv

...
∑

m,n∈Z

cl,m,(nq+q−1)λl+τle
2πimβte2πinv



















for 1 ≤ l ≤ L and τl ∈ Nλl
.

Similarly, for d = (d1, d2, . . . , dL) with dl ∈ l2(Z2), we associate it with
d(t, v) as in (2.3).

Lemma 2.5. Given g = (g1, g2, . . . , gL) with gl ∈ L2(R), let G(g, a, b) be a

Bessel sequence in L2(R). Then, for f ∈ L2(R) and c = (c1, c2, . . . , cL) with

cl ∈ l2(Z2), f =
∑L

l=1

∑

m,n∈Z
cl,m,nEmβTnal

gl if and only if Zαqf(t, v) =

Φ∗
g(t, v)c(t, v) for a.e. (t, v) ∈ [0, 1

β
)× [0, 1).
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Proof. Since Z = (qZ + Nq)λl + Nλl
and λlal = α for 1 ≤ l ≤ L, f =

∑L

l=1

∑

m,n∈Z
cl,m,nEmβTnal

gl can be written as

f =

L
∑

l=1

q−1
∑

r=0

λl−1
∑

τl=0

∑

m,n∈Z

cl,m,(nq+r)λl+τlEmβTnαq+rα+τlαl
gl,

which is equivalent to

Zαqf(t, v)(2.4)

=

L
∑

l=1

λl−1
∑

τl=0

q−1
∑

r=0

∑

m,n∈Z

cl,m,(nq+r)λl+τlZαq(EmβTαq+rα+τlal
gl)(t, v)

=
L
∑

l=1

λl−1
∑

τl=0

q−1
∑

r=0

(
∑

m,n∈Z

cl,m,(nq+r)λl+τle
2πimβte2πinv)Zαqgl(t− rα − τlal, v)

for (t, v) ∈ [0, 1
β
)× [0, 1) by Lemmas 1.1 and 2.1. By the definition of Φg(t, v),

(2.4) can be rewritten as

Zαqf(t, v) = Φ∗
g(t, v)c(t, v) for (t, v) ∈ [0,

1

β
)× [0, 1).

The proof is completed. �

Definition 2.2. Let G(g, a, b) be a Bessel sequence in L2(R). We say that
G(g, a, b) has Riesz property if, for c = (c1, c2, . . . , cL) with cl ∈ l2(Z2),
whenever

L
∑

l=1

∑

m,n∈Z

cl,m,nEmβTnal
gl = 0,

we must have c = 0, i.e., cl,m,n = 0 for 1 ≤ l ≤ L and m, n ∈ Z.

By an easy application of the spectral theorem of self-adjoint matrices, we
have the following lemma (see also [2, p. 978]):

Lemma 2.6. Given a measurable set E in R2 with |E| > 0, let A : E →
Ms,t be a matrix-valued measurable function. Define by P(t, v) the orthogonal

projection of Ct onto ker(A(t, v)). Then

P(t, v) = lim
n→∞

exp(−nA∗(t, v)A(t, v))

for (t, v) ∈ E, and thus P(t, v) is measurable.

Theorem 2.1. Let G(g, a, b) be a Bessel sequence in L2(R). Then G(g, a, b)
has Riesz property if and only if

(2.5) rank(Φg(t, v)) = Q for a.e. (t, v) ∈ [0,
1

βq
)× [0, 1).



RATIONAL TIME-FREQUENCY MULTI-WINDOW GABOR FRAMES 905

Proof. By Lemma 2.3, the equation (2.5) is equivalent to

(2.6) rank(Φg(t, v)) = Q for a.e. (t, v) ∈ [0,
1

β
)× [0, 1).

So, to finish the proof, we only need to prove that (2.6) is equivalent to c = 0
being a unique solution to

(2.7) Φ∗
g(t, v)c(t, v) = 0 for a.e. (t, v) ∈ [0,

1

β
)× [0, 1)

in {c = (c1, c2, . . . , cL) : cl ∈ l2(Z2) for 1 ≤ l ≤ L} by Lemmas 1.1 and 2.5.

Suppose (2.6) holds. Then the columns of Φ∗
g(t, v) are linearly independent,

which implies that c = 0 is a unique solution to (2.7).
Conversely, suppose rank(Φg(·, ·)) < Q on some E ⊂ [0, 1

β
) × [0, 1) with

|E| > 0. We denote by P(t, v) the orthogonal projection of CQ onto ker(Φ∗
g(t,

v)). Then there exists i0 ∈ NQ such that P(·, ·)ei0 6= 0 on some E′ ⊂ E with
|E′| > 0. Define c = (c1, c2, . . . , cL) with cl ∈ l2(Z2) by

c(t, v) =

{

P(t, v)ei0 if (t, v) ∈ E′;
0, otherwise

for (t, v) ∈ [0, 1
β
) × [0, 1). Then c is well-defined by Lemma 2.6 and the fact

that ‖c(t, v)‖ ≤ ‖ei0‖ = 1 for a.e. (t, v) ∈ [0, 1
β
) × [0, 1), and c is a nonzero

solution to (2.7). The proof is completed. �

3. Proofs of Theorems 1.1-1.3

Proof of Theorem 1.1. Define

Γ =

{

f ∈ L2(R) : Zαqf ∈ L∞([0,
1

β
)× [0, 1), Cp)

}

.

Since L∞([0, 1
β
) × [0, 1), Cp) is dense in L2([0, 1

β
) × [0, 1), Cp), Γ is dense in

L2(R) by Lemma 1.1. So G(g, a, b) is a frame for L2(R) with frame bounds
A and B if and only if

A‖f‖2 ≤
L
∑

l=1

∑

m,n∈Z

|〈f, EmβTnal
gl〉|2 ≤ B‖f‖2 for f ∈ Γ,

i.e.,
(3.1)

A‖f‖2 ≤
L
∑

l=1

λl−1
∑

τl=0

q−1
∑

r=0

∑

m,n∈Z

|〈f, EmβTnαq+rα+τlal
gl〉|2 ≤ B‖f‖2 for f ∈ Γ

by the fact that Z = qλlZ + λlNq + Nλl
for each 1 ≤ l ≤ L. By Lemmas 1.1

and 2.2, (3.1) can be written as

βA

∫ 1
β

0

∫ 1

0

‖Zαqf(t, v)‖2dtdv(3.2)
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≤
∫ 1

β

0

∫ 1

0

〈Φ∗
g(t, v)Φg(t, v)Zαqf(t, v), Zαqf(t, v)〉dtdv

≤ βB

∫ 1
β

0

∫ 1

0

‖Zαqf(t, v)‖2dtdv

for f ∈ Γ. By Lemma 2.3,

βAI ≤ Φ∗
g(t, v)Φg(t, v) ≤ βBI for a.e. (t, v) ∈ [0,

1

βq
)× [0, 1)

if and only if

(3.3) βAI ≤ Φ∗
g(t, v)Φg(t, v) ≤ βBI for a.e. (t, v) ∈ [0,

1

β
)× [0, 1).

Therefore, to finish the proof, we only need to prove the equivalence between
(3.2) and (3.3). It is obvious that (3.3) implies (3.2). Next we prove that (3.2)
implies (3.3). Suppose (3.2) holds. Since each entry of Φ∗

g(t, v)Φg(t, v) belongs

to L1([0, 1
β
)× [0, 1)), almost every point in (0, 1

β
)× (0, 1) is a Lebesgue point

of all entries of Φ∗
g(t, v)Φg(t, v). Let (t0, v0) be such a point. Choose ǫ > 0

such that B((t0, v0), ǫ) ⊂ (0, 1
β
)× (0, 1). For x ∈ Cp, define f ∈ L2(R) by

Zαqf(t, v) =
χ

B((t0, v0), ǫ)
(t, v)

√

|B((t0, v0), ǫ)|
x̄ for (t, v) ∈ [0,

1

β
)× [0, 1).

Then f ∈ Γ. Applying (3.2) to such f , we have

βA‖x‖2 ≤ 1

|B((t0, v0), ǫ)|

∫

B((t0, v0), ǫ)

〈Φ∗
g(t, v)Φg(t, v)x, x〉 ≤ βB‖x‖2,

and thus
βA‖x‖2 ≤ 〈Φ∗

g(t0, v0)Φg(t0, v0)x, x〉 ≤ βB‖x‖2
by letting ǫ → 0. This implies (3.3) by the arbitrariness of x and (t0, v0). The
proof is completed. �

Remark 3.1. By the proof of Theorem 1.1, G(g, a, b) is a Bessel sequence in
L2(R) with Bessel bound B if and only if Φ∗

g(t, v)Φg(t, v) ≤ βBI, equivalently,

‖Φg(t, v)‖ ≤ √
βB for a.e. (t, v) ∈ [0, 1

βq
)× [0, 1) when Φg(t, v) is understood

as an operator from Cp into CQ. It is well-known that such operator norm is
equivalent to the one obtained by taking the maximum of the absolute values
of all entries of a matrix. So G(g, a, b) is a Bessel sequence in L2(R) if and
only if Zαqgl ∈ L∞(R2) for 1 ≤ l ≤ L by the quasi-periodicity of Zαq.

Proof of Theorem 1.2. It is well-known that G(g, a, b) is a Riesz basis for
L2(R) with Riesz bounds A and B if and only if G(g, a, b) has Riesz property
and is a frame for L2(R) with frame bounds A and B, and that G(g, a, b) is
an orthonormal basis for L2(R) if and only if it is a Riesz basis for L2(R) with
Riesz bound 1. So we have Theorem 1.2 by Theorems 1.1 and 2.1. The proof
is completed. �
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Proof of Theorem 1.3. By Lemma 2.5, G(h, a, b) is a dual of G(g, a, b) if and
only if, for each f ∈ L2(R),

(3.4) Zαqf(t, v) = Φ∗
g(t, v)d(t, v) for a.e. (t, v) ∈ [0,

1

β
)× [0, 1),

where d = (d1, d2, . . . , dL) with dl,m,n = 〈f, EmβTnal
hl〉 for 1 ≤ l ≤ L and m,

n ∈ Z. Since Z = qλlZ + λlNq + Nλl
(which implies that alZ = αqZ + αNq +

alNλl
) for each 1 ≤ l ≤ L, we have

dl,m,(nq+r)λl+τl =

∫ 1
β

0

∫ 1

0

(

Hl(t− τlal, v)Zαqf(t, v)
)

r
e−2πimβte−2πinvdtdv

by Lemma 2.2 for 1 ≤ l ≤ L, r ∈ Nq and τl ∈ Nλl
. It follows that

∑

m,n∈Z

dl,m,(nq+r)λl+τle
2πimβte2πinv =

1

β

(

Hl(t− τlal, v)Zαqf(t, v)
)

r

for 1 ≤ l ≤ L, r ∈ Nq and τl ∈ Nλl
, equivalently, d(t, v) = 1

β
Φh(t, v)Zαqf(t, v).

So G(h, a, b) is a dual of G(g, a, b) if and only if

(3.5) Zαqf(t, v) =
1

β
Φ∗

g(t, v)Φh(t, v)Zαqf(t, v)

for f ∈ L2(R) and a.e. (t, v) ∈ [0, 1
β
)× [0, 1) by (3.4). By Lemma 2.3,

Φ∗
g(t, v)Φh(t, v) = βI for a.e. (t, v) ∈ [0,

1

βq
)× [0, 1)

if and only if

(3.6) Φ∗
g(t, v)Φh(t, v) = βI for a.e. (t, v) ∈ [0,

1

β
)× [0, 1).

Therefore, to finish the proof, we only need to prove the equivalence between
(3.5) and (3.6). It is obvious that (3.6) implies (3.5). Next we prove the
converse implication. Suppose (3.5) holds. For k ∈ Np, define f ∈ L2(R) by

Zαqf(t, v) = ek for (t, v) ∈ [0,
1

β
)× [0, 1).

Then it is well-defined by Lemma 1.1. Substituting such f into (3.5), we have

ek =
1

β
Φ∗

g(t, v)Φh(t, v)ek for a.e. (t, v) ∈ [0,
1

β
)× [0, 1),

which implies (3.6) by the arbitrariness of k. The proof is completed. �
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4. Examples

This section is devoted to examples of Theorems 1.1-1.3. We first focus on
the ones of Theorems 1.1 and 1.3.

Suppose

a = (
1

3
,
2

3
) and b = (1, 1).(4.1)

Then α = p
q
= 2

3 with p = 2, q = 3. For g = (g1, g2) with g1, g2 ∈ L2(R), we

associate it with Φg as in Definition 1.1. Then

(4.2) Φg(t, v) =

(

G1(t, v)
G2(t, v)

)

with G1(t, v) =
(

G1(t, v)

G1(t− 1
3 , v)

)

, G2(t, v) = G2(t, v), where

Gl(t, v) =













Z2gl(t, v) Z2gl(t+ 1, v)

Z2gl(t− 2
3 , v) Z2gl(t+

1
3 , v)

Z2gl(t− 4
3 , v) Z2gl(t− 1

3 , v)













(4.3)

for l = 1, 2. By the quasi-periodicity of Zak transform, we have

(4.4) G1(t−
1

3
, v) =













Z2g1(t− 1
3 , v) e−2πivZ2g1(t− 4

3 , v)

e2πivZ2g1(t+ 1, v) Z2g1(t, v)

e2πivZ2g1(t+
1
3 , v) Z2g1(t− 2

3 , v)













.

So, for each (t, v) ∈ R2, G1(t − 1
3 , v) is uniquely determined by G1(t, v). Also

observe that
⋃2

r=0

⋃1
k=0([0,

1
3 )+k− 2

3r) is 2Z-congruent to [0, 2). It follows that

g is uniquely determined by the values of Φg(t, v) on [0, 1
3 )× [0, 1). Therefore,

an arbitrary matrix 9× 2 matrix-valued function K(t, v) on [0, 1
3 )× [0, 1) with

all entries being in L2([0, 1
3 )× [0, 1)) determines a unique g by

(4.5) Φg(t, v) = K(t, v) for a.e. (t, v) ∈ [0,
1

3
)× [0, 1).

Let

(4.6) K1(t, v) =





























p(t)q1(t)e
2πij0v 0

p(t)q3(t)e
2πik0v 0

0 p(t)q2(t)e
2πin0v

p(t)q2(t)e
2πin0v 0

0 p(t)q1(t)e
2πij0v

0 p(t)q3(t)e
2πik0v

p̃(t)q̃1(t)e
2πij̃0v 0

p̃(t)q̃3(t)e
2πik̃0v 0

0 p̃(t)q̃2(t)e
2πiñ0v
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for (t, v) ∈ [0, 1
3 )× [0, 1), where j0, j̃0, n0 ñ0, k0, k̃0 ∈ Z, and p(t), p̃(t), ql(t),

q̃l(t) (l = 1, 2, 3) are continuous functions about t on [0, 1
3 ] satisfying

C1(t) = |p(t)|2(|q1(t)|2 + |q2(t)|2 + |q3(t)|2)(4.7)

+ |p̃(t)|2(|q̃1(t)|2 + |q̃3(t)|2) 6= 0,

C2(t) = |p(t)|2(|q1(t)|2 + |q2(t)|2 + |q3(t)|2) + |p̃(t)|2|q̃2(t)|2 6= 0(4.8)

for each t ∈ [0, 1
3 ]. Define g = (g1, g2) by

(4.9) Φg(t, v) = K1(t, v) for a.e. (t, v) ∈ [0,
1

3
)× [0, 1).

Then we obtain the following example:

Example 4.1. Let a and b be defined as in (4.1), and let g = (g1, g2) be
defined by
(4.10)

g1(t) =







































p(t− 2j0)q1(t− 2j0) t ∈ [2j0, 2j0 +
1
3 );

p(t+ 1
3 − 2n0)q2(t+

1
3 − 2n0) t ∈ [− 1

3 + 2n0, 2n0);

p(t+ 2
3 − 2k0)q3(t+

2
3 − 2k0) t ∈ [− 2

3 + 2k0, − 1
3 + 2k0);

0 otherwise,

g2(t) =







































p̃(t− 2j̃0)q̃1(t− 2j̃0) t ∈ [2j̃0, 2j̃0 +
1
3 );

p̃(t+ 1
3 − 2ñ0)q̃2(t+

1
3 − 2ñ0) t ∈ [− 1

3 + 2ñ0, 2ñ0);

p̃(t+ 2
3 − 2k̃0)q̃3(t+

2
3 − 2k̃0) t ∈ [− 2

3 + 2k̃0, − 1
3 + 2k̃0);

0 otherwise

(4.11)

for a.e. t ∈ R, where j0, j̃0, n0 ñ0, k0, k̃0 ∈ Z, and p(t), p̃(t), ql(t), q̃l(t) (l = 1,
2, 3) are continuous functions about t on [0, 1

3 ] satisfying (4.7) and (4.8). Then

G(g, a, b) is a frame for L2(R).

Proof. By (4.6), (4.9) and the definition of Zak transform, we can easily obtain
(4.10) and (4.11). And by the continuity of p(t), p̃(t), ql(t), q̃l(t) (l = 1, 2, 3),
(4.7) and (4.8), we have

0 < A = min

{

Cl(t) : l = 1, 2, t ∈ [0,
1

3
]

}

≤ max

{

Cl(t) : l = 1, 2, t ∈ [0,
1

3
]

}

= B < ∞.
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It is easy to check that

〈Φ∗
g(t, v)Φg(t, v)x, x〉 = C1(t)|x1|2 + C2(t)|x2|2

for x ∈ C2 and a.e. (t, v) ∈ [0, 1
3 )× [0, 1). So

A‖x‖2 ≤ 〈Φ∗
g(t, v)Φg(t, v)x, x〉 ≤ B‖x‖2

for x ∈ C2 and a.e. (t, v) ∈ [0, 1
3 )× [0, 1).

This implies that G(g, a, b) is a frame for L2(R) with frame bounds A and
B by Theorem 1.1. �

Remark 4.1. In Example 4.1, by choosing good p(t), p̃(t), ql(t), q̃l(t) (l = 1, 2,
3) we can obtain a frame G(g, a, b) with g1 and g2 having prescribed piecewise

smoothness. In particular, if k0 = n0 = j0 and k̃0 = ñ0 = j̃0 in addition, we
can obtain g1 and g2 having prescribed smoothness on the whole line R by a
careful choice of p(t), p̃(t), ql(t), q̃l(t) (l = 1, 2, 3). Let us illustrate this by

the following arguments. Suppose k0 = n0 = j0 = j and k̃0 = ñ0 = j̃0 = j̃ in
Example 4.1. Take continuous functions p(t), p̃(t), ql(t), q̃l(t) (l = 1, 2, 3) on
[0, 1

3 ] satisfying (4.7), (4.8) and

q3(0) = q1(
1

3
) = 0, p(

1

3
)q3(

1

3
) = p(0)q2(0), p(

1

3
)q2(

1

3
) = p(0)q1(0);(4.12)

q̃3(0) = q̃1(
1

3
) = 0, p̃(

1

3
)q̃3(

1

3
) = p̃(0)q̃2(0), p̃(

1

3
)q̃2(

1

3
) = p̃(0)q̃1(0).(4.13)

Then both g1 and g2 are continuous on R, and G(g, a, b) is a frame for L2(R)
by Example 4.1. If we make the following four assumptions, then both g1 and
g2 have continuous derivatives of order one on R, and G(g, a, b) is a frame for
L2(R) by Example 4.1:

(I) p(t), p̃(t), ql(t), q̃l(t) (l = 1, 2, 3) have continuous derivatives of order
one on [0, 1

3 ];
(II) (4.7), (4.8), (4.12), (4.13) hold;
(III)

p(t)q1(t) = 2p(0)q1(0)− p(
1

3
− t)q2(

1

3
− t)

for t ∈ [0, δ1] with some 0 < δ1 <
1

6
;

p(t)q2(t) = 2p(0)q2(0)− p(
1

3
− t)q3(

1

3
− t)

for t ∈ [0, δ2] with some 0 < δ2 <
1

6
;

(IV)

p̃(t)q̃1(t) = 2p̃(0)q̃1(0)− p̃(
1

3
− t)q̃2(

1

3
− t)

for t ∈ [0, δ̃1] with some 0 < δ̃1 <
1

6
;
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p̃(t)q̃2(t) = 2p̃(0)q̃2(0)− p̃(
1

3
− t)q̃3(

1

3
− t)

for t ∈ [0, δ̃2] with some 0 < δ̃2 <
1

6
.

Now let

K2(t, v) =





























m0(v) 0
m2(v) 0

0 m1(v)
m1(v) 0

0 m0(v)
0 m2(v)

m̃1(v) 0
0 m̃0(v)
0 m̃2(v)





























for (t, v) ∈ [0, 1
3 ) × [0, 1), where ml(v), m̃l(v) (l = 0, 1, 2) are continuous

functions about v on [0, 1] satisfying

D1(v) = |m0(v)|2 + |m1(v)|2 + |m2(v)|2 + |m̃1(v)|2 6= 0,(4.14)

D2(v) = |m0(v)|2 + |m1(v)|2 + |m2(v)|2 + |m̃0(v)|2 + |m̃2(v)|2 6= 0(4.15)

for each v ∈ [0, 1]. PutA = min {Dl(v) : l = 1, 2, v ∈ [0, 1]}, B = max{Dl(v) :
l = 1, 2, v ∈ [0, 1]}. Define g = (g1, g2) by

Φg(t, v) = K2(t, v).(4.16)

Then, by an argument similar to Example 4.1, we have the following example:

Example 4.2. Let a and b be defined as in (4.1). Define g = (g1, g2) as in
(4.16). Then G(g, a, b) is a frame for L2(R) with frame bounds A and B.

Next we give two explicit expressions of g = (g1, g2) in Example 4.2. Observe
that, for µ1, µ2 > 0, we always have

(µ1 cos
2 2πv + µ2 sin

2 2πv)N =
N
∑

k=0

[

√

Ck
N (

√
µ1 cos 2πv)

N−k(
√
µ2 sin 2πv)

k

]2

(4.17)

> 0.

Motivated by this fact, we give two concrete constructions of g.
(1) Let N = 4 in (4.17), and choose ml(v), m̃l(v) (l = 0, l, 2) in (4.16) as

follows:

m0(v) = µ2
1 cos

4 2πv, m1(v) = i2µ
3
2
1 µ

1
2
2 cos3 2πv sin 2πv,

m2(v) =
√
6µ1µ2 cos

2 2πv sin2 2πv,

m̃0(v) = i2µ
1
2
1 µ

3
2
2 cos 2πv sin3 2πv,

m̃1(v) = m̃2(v) = µ2
2 sin

4 2πv.
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Then D1(v) and D2(v) are both continuous on [0, 1], and

D1(v) ≥ µ4
1 cos

8 2πv + µ4
2 sin

8 2πv > 0,

D2(v) = (µ1 cos
2 2πv + µ2 sin

2 2πv)4 > 0

for v ∈ [0, 1]. So (4.14) and (4.15) hold. By Example 4.2, we obtain a frame
G(g, a, b) for L2(R), where

g1(t) =
3

8
µ2
1χ[0, 1

3
)
(t) +

1

4
µ2
1χ[−4,− 11

3
)∪[4, 13

3
)
(t) +

1

16
µ2
1χ[−8,− 23

3
)∪[8, 25

3
)
(t)

+
1

4
µ

3
2
1 µ

1
2
2 χ[ 11

3
, 4)

(t)− 1

4
µ

3
2
1 µ

1
2
2 χ[− 13

3
,−4)

(t) +
1

8
µ

3
2
1 µ

1
2
2 χ[ 23

3
, 8)

(t)

− 1

8
µ

3
2
1 µ

1
2
2 χ[− 25

3
,−8)

(t) +

√
6

8
µ1µ2χ

[− 2
3
, − 1

3
)
(t)

−
√
6

16
µ1µ2χ

[− 26
3

,− 25
3

)∪[ 22
3

, 23
3

)
(t),

g2(t) =
3

8
µ2
2χ[− 1

3
, 1
3
)
(t)− 1

4
µ2
2χ[ 11

3
, 13

3
)∪[− 13

3
,− 11

3
)
(t) +

1

16
µ2
2χ[− 25

3
,− 23

3
)∪[ 23

3
, 25

3
)
(t)

+
1

4
µ

1
2
1 µ

3
2
2 χ[ 13

3
, 14

3
)
(t)− 1

4
µ

1
2
1 µ

3
2
2 χ[− 11

3
,− 10

3
)
(t)− 1

8
µ

1
2
1 µ

3
2
2 χ[ 25

3
, 26

3
)
(t)

+
1

8
µ

1
2
1 µ

3
2
2 χ[− 23

3
,− 22

3
)
(t).

(2) Let N = 3, and choose ml(v), m̃l(v) (l = 0, l, 2) in (4.16) as follows:

m0(v) = µ
3
2
1 cos3 2πv, m1(v) = i

√
3µ1µ

1
2
2 cos2 2πv sin 2πv,

m2(v) =
√
3µ

1
2
1 µ2 cos 2πv sin

2 2πv,

m̃1(v) = iµ
3
2
2 sin3 2πv,

m̃0(v) = iβ0µ
3
2
2 sin3 2πv,

m̃2(v) = iβ2µ
3
2
2 sin3 2πv,

where β0, β2 ≥ 0, and β2
0 + β2

2 = 1. Then

D1(v) = D2(v) = (µ1 cos
2 2πv + µ2 sin

2 2πv)3 > 0

for v ∈ [0, 1]. So (4.14) and (4.15) hold, and Example 4.2 provides us with a
frame G(g, a, b) for L2(R), where

g1(t) =
3

8
µ

3
2
1 χ[−2, − 5

3
)∪[2, 7

3
)
(t)+

1

8
µ

3
2
1 χ[−6, − 17

3
)∪[6, 19

3
)
(t) +

√
3

8
µ1µ

1
2
2 χ[ 5

3
, 2)∪[ 17

3
, 6)

(t)

−
√
3

8
µ1µ

1
2
2 χ[− 19

3
, −6)∪[− 7

3
, −2)

(t) +

√
3

8
µ

1
2
1 µ2χ

[ 4
3
, 5
3
)∪[− 8

3
,− 7

3
)
(t)

−
√
3

8
µ

1
2
1 µ2χ

[− 20
3

, − 19
3

)∪[ 16
3

, 17
3

)
(t),

g2(t) =
3

8
µ

3
2
2 χ[2, 7

3
)
(t)− 3

8
µ

3
2
2 χ[−2,− 5

3
)
(t) +

1

8
µ

3
2
2 χ[−6,− 17

3
)
(t)− 1

8
µ

3
2
2 χ[6, 19

3
)
(t)
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+
3

8
β0µ

3
2
2 χ[ 7

3
, 8
3
)
(t)− 3

8
β0µ

3
2
2 χ[− 5

3
,− 4

3
)
(t)− 1

8
β0µ

3
2
2 χ[ 19

3
, 20

3
)
(t)

+
1

8
β0µ

3
2
2 χ[− 17

3
,− 16

3
)
(t) +

3

8
β2µ

3
2
2 χ[ 5

3
, 6
3
)
(t)− 3

8
β2µ

3
2
2 χ[− 7

3
, −2)

(t)

+
1

8
β2µ

3
2
2 χ[− 19

3
,−6)

(t)− 1

8
β2µ

3
2
2 χ[ 17

3
, 6)

(t).

Now we turn to Theorem 1.3. We still work under (4.1). Let g = (g1, g2) be
associated with Φg as in (4.2), and h = (h1, h2) with Φh similarly. A simple
computation shows that

G∗
1(t, v)H1(t, v) =

(

A1(t, v) B1(t, v)
e2πivB1(t, v) A1(t, v)

)

,

where

A1(t, v) = Z2g1(t, v)Z2h1(t, v) + Z2g1(t−
2

3
, v)Z2h1(t−

2

3
, v)

+ Z2g1(t−
4

3
, v)Z2h1(t−

4

3
, v) + Z2g1(t−

1

3
, v)Z2h1(t−

1

3
, v)

+ Z2g1(t+ 1, v)Z2h1(t+ 1, v) + Z2g1(t+
1

3
, v)Z2h1(t+

1

3
, v),

B1(t, v) = Z2g1(t, v)Z2h1(t+ 1, v) + Z2g1(t−
2

3
, v)Z2h1(t+

1

3
, v)

+ Z2g1(t−
4

3
, v)Z2h1(t−

1

3
, v) + e−2πivZ2g1(t−

1

3
, v)Z2h1(t−

4

3
, v)

+ e−2πivZ2g1(t+1, v)Z2h1(t, v)+e−2πivZ2g1(t+
1

3
, v)Z2h1(t−

2

3
, v).

It follows that

Φ∗
g(t, v)Φh(t, v) = I for a.e. (t, v) ∈ [0,

1

3
)× [0, 1)(4.18)

if and only if

(4.19) G∗
2(t, v)H2(t, v) =

(

1−A1(t, v) −B1(t, v)
−e2πivB1(t, v) 1−A1(t, v)

)

for a.e. (t, v) ∈ [0, 1
3 )× [0, 1).

In particular, (4.19) can be written as

(4.20) G∗
2(t, v)H2(t, v) = (1−A1(t, v))I for a.e. (t, v) ∈ [0,

1

3
)× [0, 1)

if

(4.21) B1(t, v) = 0 for a.e. (t, v) ∈ [0,
1

3
)× [0, 1).
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Now suppose (4.21) holds, and g̃2, h̃2 ∈ L2(R) with Z2g̃2, Z2h̃2 ∈ L∞(R2) are
such that

(4.22) G̃∗
2(t, v)H̃2(t, v) = I for a.e. (t, v) ∈ [0,

1

3
)× [0, 1).

Define g2 and h2 by

(4.23) G2(t, v) = C(t, v)G̃2(t, v),

(4.24) H2(t, v) = D(t, v)H̃2(t, v),

where C(t, v), D(t, v) ∈ L∞([0, 1
3 )× [0, 1)), and C(t, v)D(t, v) = 1−A1(t, v)

for a.e. (t, v) ∈ [0, 1
3 ) × [0, 1). Then (4.18) holds, and thus G(g, a, b) and

G(h, a, b) are a pair of dual frames by Theorem 1.3. It is easy to design g1, h1

and g2, h2 satisfying (4.21)-(4.24). Indeed, UEP method by [17] can be used

to construct g̃2 = h̃2 satisfying (4.22). Now we collect our arguments as the
following example:

Example 4.3. Let a and b be defined as in (4.1). Define g = (g1, g2) and
h = (h1, h2) such that Z2gl, Z2hl ∈ L∞(R2) for l = 1, 2, and that (4.21)
-(4.24) hold. Then G(g, a, b) and G(h, a, b) are a pair of dual frames.

Next we give a special case of Example 4.3 in terms of orthogonal filters. We
know that there are many such filters. So it shows that we have much freedom
to design many different pairs of Gabor dual frames.

Example 4.4. In Example 4.3, define g1 and h1 by G1(t, v) and H1(t, v) such
that

Z2g1(t, v) = Z2h1(t, v) = q0,0(t, v) = 1,

Z2g1(t+ 1, v) = −e−2πivZ2h1(t+ 1, v) = p(t, v)q0,1(t, v),

Z2g1(t−
2

3
, v) = Z2h1(t−

2

3
, v) = p(t, v)q1,0(t, v),

Z2g1(t+
1

3
, v) = −e−2πivZ2h1(t+

1

3
, v) = p(t, v)q1,1(t, v),

Z2g1(t−
4

3
, v) = Z2h1(t−

4

3
, v) = p(t, v)q2,0(t, v),

Z2g1(t−
1

3
, v) = −e−2πivZ2h1(t−

1

3
, v) = p(t, v)q2,1(t, v)

for a.e. (t, v) ∈ [0, 1
3 ) × [0, 1), where p(t, v), qi,j(t, v) ∈ L∞([0, 1

3 ) × [0, 1))
for (i, j) ∈ {0, 1, 2} × {0, 1}. Suppose m(v) is an orthogonal filter, i.e., m(v)
is a Z-periodic measurable function satisfying |m(v)|2 + |m(v + 1

2 )|2 = 1 for

a.e. v ∈ R. Let g̃2, h̃2 be defined by

G̃2(t, v) = H̃2(t, v) =





m(v) e−2πivm(v + 1
2 )

0 0

m(v + 1
2 ) −e−2πivm(v)



 = M(v)
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for a.e. (t, v) ∈ [0, 1
3 )× [0, 1). Define g2 and h2 by G2(t, v) and H2(t, v) such

that

G2(t, v) = (p(t, v))2M(v),

H2(t, v) = [e−2πiv
(

(q0,1(t, v))
2 + (q1,1(t, v))

2 + (q2,1(t, v))
2
)

− (q1,0(t, v))
2 − (q2,0(t, v))

2]M(v).

Then G(g, a, b) and G(h, a, b) are a pair of dual frames by Example 4.3.

Finally, we give an example of Theorem 1.2. Suppose

a = (
3

2
, 3) and b = (1, 1).(4.25)

Then α = p
q
= 3, λ1 = 2, λ2 = 1, and Q = (λ1+λ2)q = p = 3. For g = (g1, g2),

we associate it with Φg(t, v) as defined as in Definition 1.1, where

Φg(t, v)=

(

G1(t, v)
G2(t, v)

)

with G1(t, v)=

(

G1(t, v)
G1(t− 3

2 , v)

)

, G2(t, v) = G2(t, v),

and

Gl(t, v) = (Z3gl(t, v), Z3gl(t+ 1, v), Z3gl(t+ 2, v)) for l = 1, 2,

G1(t−
3

2
, v) = (Z3g1(t−

3

2
, v), Z3g1(t−

1

2
, v), Z3g1(t+

1

2
, v)).(4.26)

It is obvious that g2 is completely determined by the values of G2(t, v) on
[0, 1) × [0, 1). Observe that

⋃

k∈N3
([0, 1

2 ) ∪ [− 3
2 , −1) + k) is 3Z-congruent to

[0, 3). This implies that the values of G1(t, v) on [0, 1
2 )× [0, 1) determine the

ones of G1(t, v) on [ 12 , 1)× [0, 1), and thus g1 is completely determined by the

G1(t, v) on [0, 1
2 )× [0, 1). By the quasi-periodicity of Zak transform, we have

G1(t+
1

2
, v) =

(

Z3g1(t+
1
2 , v) Z3g1(t+

1
2+1, v) Z3g1(t+

1
2+2, v)

Z3g1(t+
1
2−

3
2 , v) Z3g1(t, v) Z3g1(t+1, v)

)

=
(

Z3g1(t+
1
2 , v) e−2πivZ3g1(t− 3

2 , v) e−2πivZ3g1(t− 1
2 , v)

e2πivZ3g1(t+2, v) Z3g1(t, v) Z3g1(t+1, v)

)

for (t, v) ∈ [0, 1
2 )× [0, 1). Let

K3(t, v)=



























(

p0(t, v) 0 p1(t, v)
0 p2(t, v) 0

p̃0(t, v) 0 p̃1(t, v)

)

for (t, v) ∈ [0, 1
2 )× [0, 1);

(

0 0 p2(t− 1
2 , v)e

−2πiv

p1(t− 1
2 , v)e

2πiv p0(t− 1
2 , v) 0

p̃2(t, v) p̃3(t, v) 0

)

for (t, v)∈ [ 12 , 1)×[0, 1),

where pl(t, v), p̃l′(t, v) (l = 0, 1, 2, l′ = 0, 1) are continuous functions on
[0, 1

2 ]× [0, 1], and p̃2(t, v), p̃3(t, v) are continuous on [ 12 , 1]× [0, 1] satisfying

P0(t, v) = |p0(t, v)|2 + |p̃0(t, v)|2 6= 0,(4.27)

P1(t, v) = |p1(t, v)|2 + |p̃1(t, v)|2 6= 0,
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P2(t, v) = |p2(t, v)|2 6= 0,(4.28)

P3(t, v) = |p̃2(t+
1

2
, v)|2 + |p1(t, v)|2 6= 0,

P4(t, v) = |p̃3(t+
1

2
, v)|2 + |p0(t, v)|2 6= 0(4.29)

for each (t, v) ∈ [0, 1
2 ]× [0, 1], and

p0(t, v)p1(t, v) + p̃0(t, v)p̃1(t, v) = 0,(4.30)

p̃2(t+
1

2
, v)p̃3(t+

1

2
, v) + e2πivp1(t, v)p0(t, v) = 0(4.31)

for a.e. (t, v) ∈ [0, 1
2 )× [0, 1). Put

A = min

{

Pl(t, v) : 0 ≤ l ≤ 4, (t, v) ∈ [0,
1

2
]× [0, 1]

}

,(4.32)

B = max

{

Pl(t, v) : 0 ≤ l ≤ 4, (t, v) ∈ [0,
1

2
]× [0, 1]

}

.(4.33)

Then we have the following example:

Example 4.5. Let a and b be defined as in (4.25). Define g = (g1, g2) by

(4.34) Φg(t, v) = K3(t, v) for a.e (t, v) ∈ [0, 1)× [0, 1),

then G(g, a, b) is a Riesz basis for L2(R) with Riesz bounds A and B.

Proof. By the continuity of ql(v), q̃l′(v) (l = 0, 1, 2, l′ = 0, 1, 2, 3) and (4.27)-
(4.31), we have 0 < A ≤ B < ∞, where A and B are defined as in (4.32) and
(4.33). It is easy to check that

〈Φ∗
g(t, v)Φg(t, v)x, x〉 = P0(t, v)|x1|2 + P2(t, v)|x2|2 + P1(t, v)|x3|2

for x ∈ C3 and a.e. (t, v) ∈ [0, 1
2 )× [0, 1), and

〈Φ∗
g(t, v)Φg(t, v)x, x〉=P3(t−

1

2
, v)|x1|2+P4(t−

1

2
, v)|x2|2 + P2(t−

1

2
, v)|x3|2

for x ∈ C3 and a.e. (t, v) ∈ [ 12 , 1)× [0, 1). So

A‖x‖2 ≤ 〈Φ∗
g(t, v)Φg(t, v)x, x〉 ≤ B‖x‖2

for x ∈ C
3 and a.e. (t, v) ∈ [0, 1)× [0, 1).

This implies that G(g, a, b) is a Riesz basis for L2(R) with Riesz bounds A

and B by Theorem 1.2. �

Now we conclude this article with a concrete example of Riesz basis and its
dual.
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Example 4.6. Let a and b be defined as in (4.25). In Example 4.5, take

K3(t, v)=



























(

−
√
1−t2 0 t
0 1 0
t 0

√
1−t2

)

for a.e. (t, v) ∈ [0, 1
2 )× [0, 1);

(

0 0 e−2πiv

(t− 1
2 )e

2πiv −
√

1−(t− 1
2 )

2 0√
1−(t− 1

2
)2 (t− 1

2
)e−2πiv 0

)

for a.e. (t, v) ∈ [ 12 , 1)× [0, 1).

Define g = (g1, g2) by

Φg(t, v) = K3(t, v) for a.e. (t, v) ∈ [0, 1)× [0, 1).(4.35)

Then

g1(t) = χ
[− 1

2
, 0)

(t)−
√

1− t2χ
[0, 1

2
)
(t) + (t− 2)χ

[2, 5
2
)
(t),

g2(t) = tχ
[0, 1

2
)
(t) +

√

1− (t− 1

2
)2χ

[ 1
2
, 1)

(t)

+
√

1− (t− 2)2χ
[2, 5

2
)
(t) + (t+

3

2
)χ

[− 3
2
,−1)

(t),

and G(g, a, b) is a Riesz basis for L2(R) by Example 4.5. Thus G(g, a, b) has
a unique dual G(h, a, b). By Theorem 1.3. From (4.35) we have

Φh(t, v) =



























(

1 0 0
0 −

√
1−t2 t

0 t
√
1−t2

)

for (t, v) ∈ [0, 1
2 )× [0, 1);

(

0 0 e−2πiv

(t− 1
2 )e

2πiv −
√

1−(t− 1
2 )

2 0√
1−(t− 1

2 )
2 (t− 1

2 )e
−2πiv 0

)

for (t, v) ∈ [ 12 , 1)× [0, 1).

This implies that

h1(t) = χ
[0, 1

2
)
(t) + (t− 1

2
)χ

[ 1
2
, 1)

(t)−
√

1− (t+
1

2
)2χ

[− 1
2
, 0)

(t),

h2(t) = (t+
3

2
)χ

[− 3
2
,−1)

(t) +

√

1− (t− 1

2
)2χ

[ 1
2
, 1)

(t)

+ (t− 1)χ
[1, 3

2
)
(t) +

√

1− (t− 2)2χ
[2, 5

2
)
(t).

References

[1] M. A. Akinlar and J.-P. Gabardo, Oblique duals associated with rational subspace Gabor

frames, J. Integral Equations Appl. 20 (2008), no. 3, 283–309.
[2] I. Daubechies, The wavelet transform, time-frequency localization and signal analysis,

IEEE Trans. Inform. Theory 36 (1990), no. 5, 961–1005.
[3] H. G. Feichtinger and T. Strohmer, Gabor Analysis and Algorithms, Theory and Appli-
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