DOI QR코드

DOI QR Code

ADCP 표층유속 자료처리방법 개선을 통한 영산강 하구 표층 방류수 이류속도 산정

Estimation of the Freshwater Advection Speed by Improvement of ADCP Post-Processing Method Near the Surface at the Yeongsan Estuary

  • 투고 : 2014.03.27
  • 심사 : 2014.06.16
  • 발행 : 2014.08.28

초록

연안에서 관측된 Acoustic Doppler Current Profiler(ADCP) 유속자료의 10-20%는 음향반사 측면효과로 인하여 일반적으로 사용하지 않는다. 본 연구는 ADCP의 사용되지 않았던 자료를 복구하여 영산강 하구에서 저조시 방류되는 담수의 경계면 이류속도를 구하고 이를 통해 담수 유량과 수층의 역학적 안정도를 보다 정확하게 계산하여 하구 내 혼합 환경을 잘 이해하고자 한다. 현장관측은 2011년 8월 영산강의 하구언 전면과 고하도 부근 두 정점에서 한달 동안 실시하였으며, 방류수의 이류속도는 유효 유속 판정에 상관도, 퍼센트굿, 그리고 유속 히스토그램의 엄격한 기준을 적용한 ADCP 후처리방법을 적용하여 복원하였다. 또한, 같은 수로에 위치한 두 정점에서 이류하는 퇴적물의 농도피크시간을 토대로 퇴적물의 이류속도(Sediment Advection Speed)를 계산하여 방류수 이류속도를 비교 검증하였다. 퇴적물의 이류속도를 방류시 ADCP의 표층유속과 비교하였을 때, 방류량이 $2.0{\times}10^7$톤 보다 크면 두 속도값이 유사하고, 그보다 적을 경우에는 퇴적물의 이류속도가 약간 크게 산정되는 것을 볼 수 있었다. 방류가 발생할때 담수이류속도(Freshwater Advection Speed)는 바닥으로부터 $0.8{\times}$수심의 유속보다 평균 0.8 m/s 정도 크기 때문에, 방류가 증가하는 시기에 새롭게 계산된 방류수의 속도를 포함한 순유출량(=수심 및 조석주기로 적분된 흐름)을 계산하면, 그 방향이 하구언으로 들어오는 방향에서 빠져나가는 방향으로 바뀌는 것을 확인할 수 있었다. 또한, 표층 담수의 속도가 더해짐으로써 표층 속도쉬어와 리차드슨 수의 분포가 바뀜을 관찰할 수 있었기 때문에 표층 해수의 안정도를 해석함에 있어 실제 방류수 유속의 중요성을 알 수 있었다. 향후 유속과 함께 수온과 염분의 장기적인 관측이 수행된다면 담수 방류에 따른 성층의 생성과 소멸, 그리고 관련 부유퇴적물의 변동에 대해서도 보다 정확하게 파악할 수 있을 것으로 생각된다.

It has been customary to exclude top 10-20% of velocity profiles in the Acoustic Doppler Current Profiler (ADCP) measurement due to side lobe effects at the boundary. To better understand the mixing in the Yeongsan estuary, the freshwater advection speed (FAS) was recovered from highly contaminated ADCP data near the surface. The velocity profiles were measured by using ADCP at two stations in the Yeongsan estuary during August 2011: one was located in front of the Yeongsan estuarine dam and the other was deployed near Goha Island. The FAS was recovered from the ADCP data set by applying rigorous post-processing methods and compared with the sediment advection speed (SAS). The SAS was determined by the peak time difference of suspended sediment concentration between two stations in the channel, divided by the distance of two stations. The FAS and the SAS showed very similar value when the freshwater discharge was greater than $2.0{\times}10^7$ ton and the SAS was a bit greater when the freshwater discharge was smaller. Since the FAS was on average about 0.8 m/s greater than the velocity at 0.8 of water depth from the bottom, the net discharge, estimated with recovered FAS and integrated over water depth and tidal cycle, was directed seaward during the high discharge contrary to the onshore direction of the net discharge estimated with 0.8 of water depth from the bottom. Moreover, the velocity shear and Richardson number changed when the FAS was used. Thus, the importance of the true FAS is appreciated in the investigation of the surface layer stability. If currents, temperature and salinity were observed for longer time in the future, it could be possible to more accurately understand the formation and decay of stratification as well as the suspended sediment transport processes.

키워드

참고문헌

  1. Bang, K.-Y., T. Kim, Y. Song, J. Lee, S. Kim, J.-G. Cho, J. Kim, S. Woo, and J. Oh, 2013. Numerical Modeling of Sediment Transport during the 2011 Summer Flood in the Youngsan River Estuary, Korea. J. Korean Soc. Coast. Ocean Eng., 25(2): 76-93 (in Korean). https://doi.org/10.9765/KSCOE.2013.25.2.76
  2. Cameron, W. M. and D. W. Pritchard, 1963. Estuaries. in The Sea: Ideas and Observations on Progress in the Study of the Seas, edited by M. N. Hill, volume 2: The Composition of Sea-Water, Comparative and Descriptive Oceanography, New York, pp. 306-324.
  3. Deines, K. L., 1999. Backscatter estimation using broadband acoustic Doppler current profilers. Proceedings IEEE 6th Working Conference on Current Measurements: 249-253.
  4. Dyer, K. R., 1997. Estuaries: A Physical Introduction. 2 edn, John Wiley & Sons, Chicester, West Sussex, England.
  5. Gartner, J.W. and N.K. Ganju, 2002. A preliminary evaluation of near-transducer velocities collected with low-Blank acoustic Doppler current profiler in Conference of Hydraulic Measurements and Experimental Methods. Estes Park, Colorado, Proceedings: Environmental and Water Resources Institute of the American Society of Civil Engineers.
  6. Kim, J.-W., B.I. Yoon, J.I. Song, C.W. Lim and S.-B. Woo, 2013. Spatial and temporal variability of residual current and salinity according to freshwater discharge in Yeongsan river estuary. J. Korean Soc. Coast. Ocean Eng., 25: 103-111 (in Korean). https://doi.org/10.9765/KSCOE.2013.25.2.103
  7. Lee, K.-H., B.-H. Rho, H.-J. Cho and C.-H. Lee, 2011. Estuary classification based on the characteristics of geomorphological features, natural habitat distributios and land uses. The Sea: J. Korean Soc. Oceanogr., 16: 53-69 (in Korean). https://doi.org/10.7850/jkso.2011.16.2.053
  8. Lee, C., D. Lee, and M. Kim, 2004. Acquisition of River Velocity Data Using Acoustic Doppler Current Profiler. Proceeding of Korea Water Resour. Assoc., 2004 May 01: 365-370 (in Korean).
  9. Lee, H., C. Lee, Y. Kim, and W. Kim 2009. Analysis of vertical velocity distribution in natural rivers with ADCPs. Proceeding of Korea Water Resour. Assoc., 2009 May 21: 1865-1869 (in Korean).
  10. Lee, C., Y. Kim, D. Kim, and W. Kim, 2010. Discharge Measurement Using ADCP Stationary Method. Magazine of Korea Water Resour. Assoc., 43(2): 58-65 (in Korean).
  11. MOF(Ministry of Oceans and Fisheries), 2012. Development of Integrated Estuarine Management System. MOF, 231 pp (in Korean).
  12. Muste, M., D. Kim, and J. Gonzalez-Castro, 2010. Near-Transducer Errors in ADCP Measurements: Experimental Findings. J. Hydraul. Eng., 136(5): 275-289. https://doi.org/10.1061/(ASCE)HY.1943-7900.0000173
  13. Park, H.-B., K. Kang, G. Lee, and H.-J. Shin, 2012. Distribution of Salinity and Temperature due to the Freshwater Discharge in the Yeongsan estuary in the summer of 2010. The Sea: J. Korean Soc. Oceanogr., 17(3): 139-148 (in Korean). https://doi.org/10.7850/jkso.2012.17.3.139
  14. Park, H.-B. and G. Lee, 2014, Evaluation of ADCP backscatter inversion to suspended sediment concentration in estuarine environments, J. Geophys. Res., Submitted.
  15. Park, J., K. Kang, S. Lee, and S.-R. Lee, 2013. Observation of the Sea Surface Skin Current Using a GPS-Drifter. Ocean and Polar Research, 35(3): 193-203 (in Korean). https://doi.org/10.4217/OPR.2013.35.3.193
  16. Park, L.-H., Y.-K. Cho, C. Cho, Y.-J. Sun, and K.-Y. Park, 2001. Hydrography and Circulation in the Youngsan River Estuary in Summer, 2000. The Sea: J. Korean Soc. Oceanogr., 6(4): 218-224 (in Korean).
  17. Prandle, D., 2009. Estuaries: Dynamics, Mixing, Sedimentation and Morphology. Cambridge University Press, pp. 236.
  18. RD Instrument, 2011. Acoustic Doppler Current Profiler Principles of Operation A Practical Primer. RD Instruments, San Diego, CA.
  19. Rhew, H., and G. Lee, 2011. Relationships on Magnitude and Frequency of Freshwater Discharge and Rainfall in the Altered Yeongsan Estuary. The Sea: J. Korean Soc. Oceanogr., 16(4): 22-237 (in Korean). https://doi.org/10.7850/jkso.2011.16.4.223

피인용 문헌

  1. Reviews on Methods for Measuring the Concentration of Plume Generated by Sand Mining vol.24, pp.4, 2014, https://doi.org/10.7846/jkosmee.2021.24.4.210
  2. Vertical Profiles of Suspended Sediment Transport Integrating Bottom Boundary Layer in the Channel and Port of Asan Bay, Korea vol.24, pp.4, 2021, https://doi.org/10.7846/jkosmee.2021.24.4.236