DOI QR코드

DOI QR Code

Hoek-Brown 강도기준식 및 암질강도지수를 이용한 고압 유체 지하저장 공동의 융기에 대한 안정성 평가

Stability Analysis for Ground Uplift in Underground Storage Caverns for High Pressurized Gas using Hoek-Brown Strength Criterion and Geological Strength Index (GSI)

  • 김형목 (세종대학교 에너지자원공학과)
  • Kim, Hyung-Mok (Energy & Mineral Resources Engineering, Sejong University)
  • 투고 : 2014.07.24
  • 심사 : 2014.08.08
  • 발행 : 2014.08.31

초록

압축공기에너지 및 고압 천연가스 등의 고압 유체의 지하저장을 위한 저장공동 상부 암반의 융기에 대한 안정성 검토를 위한 간이해석기법을 개발하고 그 적용사례를 소개하였다. 본 해석기법은 저장공동 상부에 원통형의 파괴모델을 가정하고 한계평형해석을 실시함으로써 융기에 대한 안전율을 계산한다. 원통형 파괴면에 작용하는 마찰저항력 계산에는 Mohr-Coulomb 강도기준식을 대신하여 Hoek-Brown 강도기준식을 적용함으로써 무결암의 강도특성 뿐만 아니라 암반 상태도 고려할 수 있도록 하였다. 다양한 암반 조건에서의 적용사례 및 암반 강도 정수의 민감도 분석 결과, 저장공동 상부 암반의 융기는 Mohr-Coulomb 강도기준식에 보다 민감함을 확인하였다.

A simple analytical approach for stability assessment of underground storage caverns against ground uplift of overburden rock above the rock caverns for high pressurized fluid such as compressed air energy storage (CAES) and compressed natural gas (CNG) was developed. In the developed approach, we assumed that failure plane of the overburden is straight upward to ground surface, and factor of safety can be calculated from a limit equilibrium analysis in terms of this cylindrical shape failure model. The frictional resisting force on the failure plane was estimated by Hoek-Brown strength criterion which replaces with Mohr-Coulomb criterion such that both intact rock strength and rock mass conditions can be considered in the current approach. We carried out a parametric sensitivity analysis of strength parameters under various rock mass conditions and demonstrated that the factor of safety againt ground uplift was more sensitive to Mohr-Coulomb strength criterion rather than Hoek-Brown criterion.

키워드

참고문헌

  1. Atkinson, J., 2007, The mechanics of soils and foundation, Taylor & Francis.
  2. Bieniawski, Z.T., 1989, Engineering rock mass classification, New York, Wiley interscience.
  3. Brandshaug, T., Christianson, M., Damjanac, B., 2001, Technical review of the lined rock cavern (LRC) concept and design methodology: mechanical response of rock mass, Itasca consulting group Inc., Minnesota.
  4. Deere, D.U., 1963, Technical description of rock cores for engineering purposes, Rock Mechanics and Engineering Geology 1(1): 16-22.
  5. Glamheden, R., Curtis, P., 2006, Excavation of a cavern for high-pressure storage of natural gas, Tunnelling and Underground Space Technology 21(1): 56-67. https://doi.org/10.1016/j.tust.2005.06.002
  6. Hoek, E., Brown, E.T., 1980, Empirical strength criterion for rock masses, Journal of Geotechnical Engineering Div. ASCE 106 (GT9): 1013-1035.
  7. Hoek, E., Kaiser, P.K., Bawden W.F., 1995, Support of underground excavations in hard rock, A.A. Balkema, Rotterdam.
  8. Hoek, E., Brown, E.T., 1997, Practical estimates of rock mass strength, International Journal of Rock Mechanica and Mining Sciences 34(8); 1165-1186. https://doi.org/10.1016/S1365-1609(97)80069-X
  9. Hoek, E., Carranza-Torres, C., Corkum, B., 2002, Hoek-Brown failure criterion -2002 Edition, Proc. 5th North Americal Rock Mechanics Symposium (NARMS-TAC), University of Toronto Press, Toronto, Vol. 1: 267-273.
  10. Hoek, E., Carter, T.G., Diederichs, M.S., 2013, Quantification of the geological strength index chart, the 47th US Rock Mechanics/ Geomechanics Symposium, San Francisco, CA. USA, June 23-26, 2013, ARMA 13-672.
  11. KIGAM (Korea Institute of Geoscience and Mineral Resources), 2011, Development of Underground Energy Storage System in Lined Rock Cavern, Ministry of Knowledge Economy, Korea.
  12. Kim, H.M., Park, D., Ryu, D.W., Song, W.K., 2012, Parametric sensitivity analysis of ground uplift above pressurized underground rock caverns, Engineering Geology 135-136: 60-65. https://doi.org/10.1016/j.enggeo.2012.03.006
  13. Park, Y.J., Moon, H.S., Park, E.S., 2013, Stability analysis of the CNG storage caverns in accordance with design parameters, Tunnel and Underground Space 23(3): 192-202. https://doi.org/10.7474/TUS.2013.23.3.192
  14. Lee, Y.K., Choi, B.H., 2012, Equivalent friction angle and cohesion of the generalized Hoek-Brown failure criterion in terms of stress invariants, Tunnel and Underground Space 22(6): 462-470 https://doi.org/10.7474/TUS.2012.22.6.462
  15. Lee, Y.K., 2014, Derivation of Mohr envelope of Hoek-Brown failure criterion using non-dimensional stress transformation, Tunnel and Underground Space 24(1): 81-88. https://doi.org/10.7474/TUS.2014.24.1.081