DOI QR코드

DOI QR Code

A Numerical Study of Automotive Indoor Thermal Comfort Model According to Boarding Conditions and Parameters Related to HVAC

HVAC 관련 매개변수 및 탑승조건에 따른 자동차 실내의 온열쾌적성 평가모델에 관한 수치해석적 연구

  • Received : 2014.05.07
  • Accepted : 2014.07.09
  • Published : 2014.09.01

Abstract

Recently, the interest in the thermal comfort is ever increasing as the time people stay in the automobile is gradually increasing. So far, however, the cooling performance of the HVAC(heating and ventilation air conditioning) system is evaluated by thermal environment criteria such as indoor air velocity and temperature, not by a thermal comfort index. Furthermore, the precise criteria has not been established yet when the thermal comfort for the automobile is evaluated using numerical analysis. In this study, the numerical analysis of automobile indoor thermal comfort according to various parameters such as HVAC operating mode, airflow, passenger boarding conditions is performed during the HVAC system's initial operating time(20 minutes). The solar ray tracing model and S2S radiation model are used and validated to simulate an external heat source. Based on this study, an evaluation model which can predict the thermal comfort index for the combination of the above parameters is presented.

자동차를 이용하는 시간이 늘어남에 따라 자동차 실내의 온열쾌적성에 대한 관심이 급증하고 있다. 그러나 아직까진 실제 자동차 중에서 공조시스템의 냉방성능은 자동차 제조사별로 온열쾌적성 지표를 통해 평가되지 않고, 실내의 공기 속도와 온도 등 열환경 기준에 의해 평가되고 있다. 또한 차 실내의 온열쾌적성을 수치해석으로 평가하는 경우 타당한 결과를 도출할 수 있는 수치기법에 대한 기준이 확립되지 않은 상황이다. 본 연구에서는 외부 열원을 모사하기 위하여 태양광선 추적모델을 사용하고, 공조시스템 작동 후 20 분까지 다양한 매개변수(공조시스템의 작동모드와 작동풍량, 인체모델 탑승조건)에 대한 자동차 실내의 온열쾌적성 평가를 수행하였다. 이를 통해 자동차 실내의 온열쾌적성 지표를 예측할 수 있는 평가모델을 도출하였다.

Keywords

References

  1. Kim, Y. K., Yang, J. S., Baek, J. H., Kim, K. C. and Ji, H. S., 2010, "Numerical Analysis on the Initial Cool-Down Performance Inside an Automobile for the Evaluation of Passenger's Thermal Comfort," Transactions of KSAE, Vol. 18(5), pp. 115-123.
  2. Seo, J. W., Park, J. H. and Choi, Y. H., 2012, "Evaluation of Thermal Comfort and Cooldown Performance Inside Automotive Cabin According to Air-Conditioning Vent Location," Transactions of KSAE, Vol. 20, No. 5, pp.120-129. https://doi.org/10.7467/KSAE.2012.20.5.120
  3. Hong, S. H., 2006, "Thermal Comfort in Automotive," MS thesis, KAIST, Korea.
  4. Simon G. Hodder. and Ken Parsons., 2007, "The Effects of Solar Radiation on Thermal Comfort," Int J Biometeorol, Vol 51, pp. 233-250.
  5. Chien, H., Jang, J. Y., Chen, Y. H. and Wu, S. C., 2008, "3-D Numerical and Experimental Analysis for Airflow Within a Passenger Compartment," International Journal of Automotive Technology, Vol 9(4), pp. 437-445. https://doi.org/10.1007/s12239-008-0053-2
  6. Martinho, N. A. G., Silva, M. C. G. and Ramos, J. A. E., 2004, "Evaluation of Thermal Comfort in a Vehicle Cabin," Proceedings of the Institution of Mechanical Engineers, Part D: Journal of Automobile Engineering, Vol. 218(2), pp. 159-166.
  7. ASHRAE Research, 2005, "2005 ASHRAE Handbook Fundamentals; Ch.8 Thermal Comfort," ASHRAE.
  8. 2005, "ISO Standard 7730; Third Edition," ISO.
  9. Fanger, P. O., 1972, "Thermal Comfort," McGraw-Hill.
  10. Jonsson, J., 2007, "Including Solar Load in CFD Analysis of Temperature Distribution in a Car Passenger Compartment," Master thesis, Lulea University of Technology, Lulea, Sweden.

Cited by

  1. Investigation on the Performance of Special Purpose Automotive Air-Conditioning System Using Dual Refrigeration Cycle vol.40, pp.4, 2016, https://doi.org/10.3795/KSME-B.2016.40.4.213
  2. Design and Cooling Performances of an Air Conditioning System with Two Parallel Refrigeration Cycles for a Special Purpose Vehicle vol.7, pp.2, 2017, https://doi.org/10.3390/app7020190