DOI QR코드

DOI QR Code

The renin-angiotensin system and aging in the kidney

  • Yoon, Hye Eun (Division of Nephrology, Department of Internal Medicine, The Catholic University of Korea College of Medicine) ;
  • Choi, Bum Soon (Division of Nephrology, Department of Internal Medicine, The Catholic University of Korea College of Medicine)
  • Received : 2014.03.31
  • Accepted : 2014.04.03
  • Published : 2014.05.01

Abstract

Aging is associated with progressive functional deterioration and structural changes in the kidney. Changes in the activity or responsiveness of the renin-angiotensin system (RAS) occur with aging. RAS changes predispose the elderly to various fluid and electrolyte imbalances as well as acute kidney injury and chronic kidney disease. Among the multiple pathways involved in renal aging, the RAS plays a central role. This review summarizes the association of the RAS with structural and functional changes in the aging kidney and age-related renal injury, and describes the underlying mechanisms of RAS-related renal aging. An improved understanding of the renal aging process may lead to better individualized care of the elderly and improved renal survival in age-related diseases.

Keywords

References

  1. Wetzels JF, Kiemeney LA, Swinkels DW, Willems HL, den Heijer M. Age- and gender-specific reference values of estimated GFR in Caucasians: the Nijmegen Biomedical Study. Kidney Int 2007;72:632-637. https://doi.org/10.1038/sj.ki.5002374
  2. Esposito C, Plati A, Mazzullo T, et al. Renal function and functional reserve in healthy elderly individuals. J Nephrol 2007;20:617-625.
  3. Davies DF, Shock NW. Age changes in glomerular filtration rate, effective renal plasma flow, and tubular excretory capacity in adult males. J Clin Invest 1950;29:496-507. https://doi.org/10.1172/JCI102286
  4. Hoang K, Tan JC, Derby G, et al. Determinants of glomerular hypofiltration in aging humans. Kidney Int 2003;64:1417-1424. https://doi.org/10.1046/j.1523-1755.2003.00207.x
  5. Zhou XJ, Rakheja D, Yu X, Saxena R, Vaziri ND, Silva FG. The aging kidney. Kidney Int 2008;74:710-720. https://doi.org/10.1038/ki.2008.319
  6. Neugarten J, Gallo G, Silbiger S, Kasiske B. Glomerulosclerosis in aging humans is not influenced by gender. Am J Kidney Dis 1999;34:884-888. https://doi.org/10.1016/S0272-6386(99)70046-6
  7. Hill GS, Heudes D, Bariety J. Morphometric study of arterioles and glomeruli in the aging kidney suggests focal loss of autoregulation. Kidney Int 2003;63:1027-1036. https://doi.org/10.1046/j.1523-1755.2003.00831.x
  8. Weinstein JR, Anderson S. The aging kidney: physiological changes. Adv Chronic Kidney Dis 2010;17:302-307. https://doi.org/10.1053/j.ackd.2010.05.002
  9. Noth RH, Lassman MN, Tan SY, Fernandez-Cruz A Jr, Mulrow PJ. Age and the renin-aldosterone system. Arch Intern Med 1977;137:1414-1417. https://doi.org/10.1001/archinte.1977.03630220056014
  10. Weidmann P, De Myttenaere-Bursztein S, Maxwell MH, de Lima J. Effect on aging on plasma renin and aldosterone in normal man. Kidney Int 1975;8:325-333. https://doi.org/10.1038/ki.1975.120
  11. Mulkerrin E, Epstein FH, Clark BA. Aldosterone responses to hyperkalemia in healthy elderly humans. J Am Soc Nephrol 1995;6:1459-1462.
  12. Jung FF, Kennefick TM, Ingelfinger JR, Vora JP, Anderson S. Down-regulation of the intrarenal renin-angiotensin system in the aging rat. J Am Soc Nephrol 1995;5:1573-1580.
  13. Anderson S, Rennke HG, Zatz R. Glomerular adaptations with normal aging and with long-term converting enzyme inhibition in rats. Am J Physiol 1994;267:F35-F43.
  14. Corman B, Michel JB. Renin-angiotensin system, converting- enzyme inhibition and kidney function in aging female rats. Am J Physiol 1986;251:R450-R455.
  15. Anderson S. Ageing and the renin-angiotensin system. Nephrol Dial Transplant 1997;12:1093-1094. https://doi.org/10.1093/ndt/12.6.1093
  16. Epstein M, Hollenberg NK. Age as a determinant of renal sodium conservation in normal man. J Lab Clin Med 1976;87:411-417.
  17. Zhou XJ, Saxena R, Liu Z, Vaziri ND, Silva FG. Renal senescence in 2008: progress and challenges. Int Urol Nephrol 2008;40:823-839. https://doi.org/10.1007/s11255-008-9405-0
  18. Musso C, Liakopoulos V, De Miguel R, Imperiali N, Algranati L. Transtubular potassium concentration gradient: comparison between healthy old people and chronic renal failure patients. Int Urol Nephrol 2006;38:387-390. https://doi.org/10.1007/s11255-006-0059-5
  19. Tank JE, Vora JP, Houghton DC, Anderson S. Altered renal vascular responses in the aging rat kidney. Am J Physiol 1994;266:F942-F948.
  20. Inserra F, Romano LA, de Cavanagh EM, Ercole L, Ferder LF, Gomez RA. Renal interstitial sclerosis in aging: effects of enalapril and nifedipine. J Am Soc Nephrol 1996;7:676-680.
  21. Perico N, Remuzzi G, Benigni A. Aging and the kidney. Curr Opin Nephrol Hypertens 2011;20:312-317. https://doi.org/10.1097/MNH.0b013e328344c327
  22. Brunet A, Sweeney LB, Sturgill JF, et al. Stress-dependent regulation of FOXO transcription factors by the SIRT1 deacetylase. Science 2004;303:2011-2015. https://doi.org/10.1126/science.1094637
  23. Yeung F, Hoberg JE, Ramsey CS, et al. Modulation of NF-kappaB-dependent transcription and cell survival by the SIRT1 deacetylase. EMBO J 2004;23:2369-2380. https://doi.org/10.1038/sj.emboj.7600244
  24. Kitada M, Kume S, Takeda-Watanabe A, Kanasaki K, Koya D. Sirtuins and renal diseases: relationship with aging and diabetic nephropathy. Clin Sci (Lond) 2013;124:153-164. https://doi.org/10.1042/CS20120190
  25. He W, Wang Y, Zhang MZ, et al. Sirt1 activation protects the mouse renal medulla from oxidative injury. J Clin Invest 2010;120:1056-1068. https://doi.org/10.1172/JCI41563
  26. Lim JH, Kim EN, Kim MY, et al. Age-associated molecular changes in the kidney in aged mice. Oxid Med Cell Longev 2012;2012:171383.
  27. Miyazaki R, Ichiki T, Hashimoto T, et al. SIRT1, a longevity gene, downregulates angiotensin II type 1 receptor expression in vascular smooth muscle cells. Arterioscler Thromb Vasc Biol 2008;28:1263-1269. https://doi.org/10.1161/ATVBAHA.108.166991
  28. Gao P, Xu TT, Lu J, et al. Overexpression of SIRT1 in vascular smooth muscle cells attenuates angiotensin II-induced vascular remodeling and hypertension in mice. J Mol Med (Berl) 2013 Dec 19 [Epub]. http://dx.doi. org/10.1007/s00109-013-1111-4.
  29. Dilauro M, Zimpelmann J, Robertson SJ, Genest D, Burns KD. Effect of ACE2 and angiotensin-(1-7) in a mouse model of early chronic kidney disease. Am J Physiol Renal Physiol 2010;298:F1523-F1532. https://doi.org/10.1152/ajprenal.00426.2009
  30. Giani JF, Burghi V, Veiras LC, et al. Angiotensin-(1-7) attenuates diabetic nephropathy in Zucker diabetic fatty rats. Am J Physiol Renal Physiol 2012;302:F1606-F1615. https://doi.org/10.1152/ajprenal.00063.2012
  31. Mori J, Patel VB, Ramprasath T, Alrob OA, et al. Angiotensin 1-7 mediates renoprotection against diabetic nephropathy by reducing oxidative stress, inf lammation and lipotoxicity. Am J Physiol Renal Physiol 2014 Feb 19 [Epub]. http://dx.doi.org/10.1152/ajprenal.00655.2013.
  32. Benigni A, Corna D, Zoja C, et al. Disruption of the Ang II type 1 receptor promotes longevity in mice. J Clin Invest 2009;119:524-530. https://doi.org/10.1172/JCI36703
  33. de Cavanagh EM, Piotrkowski B, Basso N, et al. Enalapril and losartan attenuate mitochondrial dysfunction in aged rats. FASEB J 2003;17:1096-1098. https://doi.org/10.1096/fj.02-0063fje
  34. Ma LJ, Fogo AB. Model of robust induction of glomerulosclerosis in mice: importance of genetic background. Kidney Int 2003;64:350-355. https://doi.org/10.1046/j.1523-1755.2003.00058.x
  35. Kuro-o M, Matsumura Y, Aizawa H, et al. Mutation of the mouse klotho gene leads to a syndrome resembling ageing. Nature 1997;390:45-51. https://doi.org/10.1038/36285
  36. Kuro-o M. Klotho and the aging process. Korean J Intern Med 2011;26:113-122. https://doi.org/10.3904/kjim.2011.26.2.113
  37. Koh N, Fujimori T, Nishiguchi S, et al. Severely reduced production of klotho in human chronic renal failure kidney. Biochem Biophys Res Commun 2001;280:1015-1020. https://doi.org/10.1006/bbrc.2000.4226
  38. Kuro-o M. Klotho and aging. Biochim Biophys Acta 2009;1790:1049-1058. https://doi.org/10.1016/j.bbagen.2009.02.005
  39. Mitani H, Ishizaka N, Aizawa T, et al. In vivo klotho gene transfer ameliorates angiotensin II-induced renal damage. Hypertension 2002;39:838-843. https://doi.org/10.1161/01.HYP.0000013734.33441.EA
  40. Saito K, Ishizaka N, Mitani H, Ohno M, Nagai R. Iron chelation and a free radical scavenger suppress angiotensin II-induced downregulation of klotho, an anti-aging gene, in rat. FEBS Lett 2003;551:58-62. https://doi.org/10.1016/S0014-5793(03)00894-9
  41. Karalliedde J, Maltese G, Hill B, Viberti G, Gnudi L. Effect of renin-angiotensin system blockade on soluble Klotho in patients with type 2 diabetes, systolic hypertension, and albuminuria. Clin J Am Soc Nephrol 2013;8:1899-1905. https://doi.org/10.2215/CJN.02700313
  42. Yoon HE, Ghee JY, Piao S, et al. Angiotensin II blockade upregulates the expression of Klotho, the anti-ageing gene, in an experimental model of chronic cyclosporine nephropathy. Nephrol Dial Transplant 2011;26:800-813. https://doi.org/10.1093/ndt/gfq537
  43. Yoon HE, Yang CW. Established and newly proposed mechanisms of chronic cyclosporine nephropathy. Korean J Intern Med 2009;24:81-92. https://doi.org/10.3904/kjim.2009.24.2.81

Cited by

  1. Laparoscopic Sleeve Gastrectomy Prevents the Deterioration of Renal Function in Morbidly Obese Patients Over 40 Years vol.25, pp.5, 2014, https://doi.org/10.1007/s11695-014-1486-5
  2. Aging, High Altitude, and Blood Pressure: A Complex Relationship vol.16, pp.2, 2014, https://doi.org/10.1089/ham.2015.0010
  3. Angiotensin-(1-7) Attenuates Kidney Injury Due to Obstructive Nephropathy in Rats vol.10, pp.11, 2014, https://doi.org/10.1371/journal.pone.0142664
  4. OLDER PEOPLE WITH CHRONIC KIDNEY DISEASE: DEFINITION, AND INFLUENCE OF BIOMARKERS AND MEDICATIONS UPON CARDIOVASCULAR AND RENAL OUTCOMES vol.42, pp.3, 2014, https://doi.org/10.1111/jorc.12164
  5. Age-Associated Changes in the Vascular Renin-Angiotensin System in Mice vol.2016, pp.None, 2014, https://doi.org/10.1155/2016/6731093
  6. Angiotensin III increases monocyte chemoattractant protein-1 expression in cultured human proximal tubular epithelial cells vol.31, pp.1, 2014, https://doi.org/10.3904/kjim.2016.31.1.116
  7. Stop chronic kidney disease progression: Time is approaching vol.5, pp.3, 2016, https://doi.org/10.5527/wjn.v5.i3.258
  8. Vascular calcification: When should we interfere in chronic kidney disease patients and how? vol.5, pp.5, 2014, https://doi.org/10.5527/wjn.v5.i5.398
  9. Fluid Management in the Elderly vol.7, pp.4, 2014, https://doi.org/10.1007/s40140-017-0243-4
  10. Renal Aging: Causes and Consequences vol.28, pp.2, 2014, https://doi.org/10.1681/asn.2015121308
  11. Age-related Changes in the Sirtuin1-NFE2-related Factor 2 Signaling System in the Kidney vol.92, pp.1, 2014, https://doi.org/10.3904/kjm.2017.92.1.53
  12. Klotho enhances FoxO3-mediated manganese superoxide dismutase expression by negatively regulating PI3K/AKT pathway during tacrolimus-induced oxidative stress vol.8, pp.8, 2014, https://doi.org/10.1038/cddis.2017.365
  13. Cellular senescence, senescence-associated secretory phenotype, and chronic kidney disease vol.8, pp.38, 2014, https://doi.org/10.18632/oncotarget.17327
  14. Safety and efficacy of ipragliflozin in elderly versus non-elderly Japanese patients with type 2 diabetes mellitus: a subgroup analysis of the STELLA-LONG TERM study vol.19, pp.4, 2014, https://doi.org/10.1080/14656566.2018.1434145
  15. Sex differences in transcriptomic profiles in aged kidney cells of renin lineage vol.10, pp.4, 2014, https://doi.org/10.18632/aging.101416
  16. Identification of proteins potentially associated with renal aging in rats vol.10, pp.6, 2014, https://doi.org/10.18632/aging.101460
  17. Effects of Resveratrol on the Renin-Angiotensin System in the Aging Kidney vol.10, pp.11, 2014, https://doi.org/10.3390/nu10111741
  18. Comparing the impact of older age on outcome in chronic kidney disease of different etiologies: a prospective cohort study vol.31, pp.6, 2018, https://doi.org/10.1007/s40620-018-0529-8
  19. Validation of a single factor representing the indicators of metabolic syndrome as a continuous measure of metabolic load and its association with health and cognitive function vol.13, pp.12, 2014, https://doi.org/10.1371/journal.pone.0208231
  20. Role of Klotho in Chronic Calcineurin Inhibitor Nephropathy vol.2019, pp.None, 2014, https://doi.org/10.1155/2019/1825018
  21. Role of Aldosterone and Mineralocorticoid Receptor in Cardiovascular Aging vol.10, pp.None, 2014, https://doi.org/10.3389/fendo.2019.00584
  22. Intrarenal Renin-Angiotensin System Involvement in the Pathogenesis of Chronic Progressive Nephropathy-Bridging the Informational Gap Between Disciplines vol.47, pp.7, 2014, https://doi.org/10.1177/0192623319861367
  23. Safety and effectiveness of ipragliflozin in elderly versus non-elderly Japanese type 2 diabetes mellitus patients: 12 month interim results of the STELLA-LONG TERM study vol.35, pp.11, 2019, https://doi.org/10.1080/03007995.2019.1647503
  24. Renoprotective Effect of a Dipeptidyl Peptidase-4 Inhibitor on Aging Mice vol.11, pp.3, 2014, https://doi.org/10.14336/ad.2019.0620
  25. Accelerated Kidney Aging in Diabetes Mellitus vol.2020, pp.None, 2020, https://doi.org/10.1155/2020/1234059
  26. Sex- and age-dependent differences in the hormone and drinking responses to water deprivation vol.318, pp.3, 2020, https://doi.org/10.1152/ajpregu.00303.2019
  27. Comment on “Organ‐protective effect of angiotensin‐converting enzyme 2 and its effect on the prognosis of COVID‐19” vol.92, pp.9, 2014, https://doi.org/10.1002/jmv.25848
  28. Targeting Molecular Mechanism of Vascular Smooth Muscle Senescence Induced by Angiotensin II, A Potential Therapy via Senolytics and Senomorphics vol.21, pp.18, 2014, https://doi.org/10.3390/ijms21186579
  29. Could Dapagliflozin Attenuate COVID-19 Progression in High-Risk Patients With or Without Diabetes? Behind DARE-19 Concept vol.78, pp.1, 2014, https://doi.org/10.1097/fjc.0000000000001011
  30. Renin-angiotensin system at the interface of COVID-19 infection vol.890, pp.None, 2014, https://doi.org/10.1016/j.ejphar.2020.173656
  31. The Tissue Renin-Angiotensin System and Its Role in the Pathogenesis of Major Human Diseases: Quo Vadis? vol.10, pp.3, 2014, https://doi.org/10.3390/cells10030650
  32. Association between serum potassium and risk of all‐cause mortality among chronic kidney diseases patients: A systematic review and dose-response meta‐analysis of more than one million p vol.9, pp.9, 2021, https://doi.org/10.1002/fsn3.2478
  33. In Vivo Renin Activity Imaging in the Kidney of Progeroid Ercc1 Mutant Mice vol.22, pp.22, 2014, https://doi.org/10.3390/ijms222212433
  34. The renin-angiotensin system and cardiovascular autonomic control in aging vol.150, pp.None, 2014, https://doi.org/10.1016/j.peptides.2021.170733