References
- Wetzels JF, Kiemeney LA, Swinkels DW, Willems HL, den Heijer M. Age- and gender-specific reference values of estimated GFR in Caucasians: the Nijmegen Biomedical Study. Kidney Int 2007;72:632-637. https://doi.org/10.1038/sj.ki.5002374
- Esposito C, Plati A, Mazzullo T, et al. Renal function and functional reserve in healthy elderly individuals. J Nephrol 2007;20:617-625.
- Davies DF, Shock NW. Age changes in glomerular filtration rate, effective renal plasma flow, and tubular excretory capacity in adult males. J Clin Invest 1950;29:496-507. https://doi.org/10.1172/JCI102286
- Hoang K, Tan JC, Derby G, et al. Determinants of glomerular hypofiltration in aging humans. Kidney Int 2003;64:1417-1424. https://doi.org/10.1046/j.1523-1755.2003.00207.x
- Zhou XJ, Rakheja D, Yu X, Saxena R, Vaziri ND, Silva FG. The aging kidney. Kidney Int 2008;74:710-720. https://doi.org/10.1038/ki.2008.319
- Neugarten J, Gallo G, Silbiger S, Kasiske B. Glomerulosclerosis in aging humans is not influenced by gender. Am J Kidney Dis 1999;34:884-888. https://doi.org/10.1016/S0272-6386(99)70046-6
- Hill GS, Heudes D, Bariety J. Morphometric study of arterioles and glomeruli in the aging kidney suggests focal loss of autoregulation. Kidney Int 2003;63:1027-1036. https://doi.org/10.1046/j.1523-1755.2003.00831.x
- Weinstein JR, Anderson S. The aging kidney: physiological changes. Adv Chronic Kidney Dis 2010;17:302-307. https://doi.org/10.1053/j.ackd.2010.05.002
- Noth RH, Lassman MN, Tan SY, Fernandez-Cruz A Jr, Mulrow PJ. Age and the renin-aldosterone system. Arch Intern Med 1977;137:1414-1417. https://doi.org/10.1001/archinte.1977.03630220056014
- Weidmann P, De Myttenaere-Bursztein S, Maxwell MH, de Lima J. Effect on aging on plasma renin and aldosterone in normal man. Kidney Int 1975;8:325-333. https://doi.org/10.1038/ki.1975.120
- Mulkerrin E, Epstein FH, Clark BA. Aldosterone responses to hyperkalemia in healthy elderly humans. J Am Soc Nephrol 1995;6:1459-1462.
- Jung FF, Kennefick TM, Ingelfinger JR, Vora JP, Anderson S. Down-regulation of the intrarenal renin-angiotensin system in the aging rat. J Am Soc Nephrol 1995;5:1573-1580.
- Anderson S, Rennke HG, Zatz R. Glomerular adaptations with normal aging and with long-term converting enzyme inhibition in rats. Am J Physiol 1994;267:F35-F43.
- Corman B, Michel JB. Renin-angiotensin system, converting- enzyme inhibition and kidney function in aging female rats. Am J Physiol 1986;251:R450-R455.
- Anderson S. Ageing and the renin-angiotensin system. Nephrol Dial Transplant 1997;12:1093-1094. https://doi.org/10.1093/ndt/12.6.1093
- Epstein M, Hollenberg NK. Age as a determinant of renal sodium conservation in normal man. J Lab Clin Med 1976;87:411-417.
- Zhou XJ, Saxena R, Liu Z, Vaziri ND, Silva FG. Renal senescence in 2008: progress and challenges. Int Urol Nephrol 2008;40:823-839. https://doi.org/10.1007/s11255-008-9405-0
- Musso C, Liakopoulos V, De Miguel R, Imperiali N, Algranati L. Transtubular potassium concentration gradient: comparison between healthy old people and chronic renal failure patients. Int Urol Nephrol 2006;38:387-390. https://doi.org/10.1007/s11255-006-0059-5
- Tank JE, Vora JP, Houghton DC, Anderson S. Altered renal vascular responses in the aging rat kidney. Am J Physiol 1994;266:F942-F948.
- Inserra F, Romano LA, de Cavanagh EM, Ercole L, Ferder LF, Gomez RA. Renal interstitial sclerosis in aging: effects of enalapril and nifedipine. J Am Soc Nephrol 1996;7:676-680.
- Perico N, Remuzzi G, Benigni A. Aging and the kidney. Curr Opin Nephrol Hypertens 2011;20:312-317. https://doi.org/10.1097/MNH.0b013e328344c327
- Brunet A, Sweeney LB, Sturgill JF, et al. Stress-dependent regulation of FOXO transcription factors by the SIRT1 deacetylase. Science 2004;303:2011-2015. https://doi.org/10.1126/science.1094637
- Yeung F, Hoberg JE, Ramsey CS, et al. Modulation of NF-kappaB-dependent transcription and cell survival by the SIRT1 deacetylase. EMBO J 2004;23:2369-2380. https://doi.org/10.1038/sj.emboj.7600244
- Kitada M, Kume S, Takeda-Watanabe A, Kanasaki K, Koya D. Sirtuins and renal diseases: relationship with aging and diabetic nephropathy. Clin Sci (Lond) 2013;124:153-164. https://doi.org/10.1042/CS20120190
- He W, Wang Y, Zhang MZ, et al. Sirt1 activation protects the mouse renal medulla from oxidative injury. J Clin Invest 2010;120:1056-1068. https://doi.org/10.1172/JCI41563
- Lim JH, Kim EN, Kim MY, et al. Age-associated molecular changes in the kidney in aged mice. Oxid Med Cell Longev 2012;2012:171383.
- Miyazaki R, Ichiki T, Hashimoto T, et al. SIRT1, a longevity gene, downregulates angiotensin II type 1 receptor expression in vascular smooth muscle cells. Arterioscler Thromb Vasc Biol 2008;28:1263-1269. https://doi.org/10.1161/ATVBAHA.108.166991
- Gao P, Xu TT, Lu J, et al. Overexpression of SIRT1 in vascular smooth muscle cells attenuates angiotensin II-induced vascular remodeling and hypertension in mice. J Mol Med (Berl) 2013 Dec 19 [Epub]. http://dx.doi. org/10.1007/s00109-013-1111-4.
- Dilauro M, Zimpelmann J, Robertson SJ, Genest D, Burns KD. Effect of ACE2 and angiotensin-(1-7) in a mouse model of early chronic kidney disease. Am J Physiol Renal Physiol 2010;298:F1523-F1532. https://doi.org/10.1152/ajprenal.00426.2009
- Giani JF, Burghi V, Veiras LC, et al. Angiotensin-(1-7) attenuates diabetic nephropathy in Zucker diabetic fatty rats. Am J Physiol Renal Physiol 2012;302:F1606-F1615. https://doi.org/10.1152/ajprenal.00063.2012
- Mori J, Patel VB, Ramprasath T, Alrob OA, et al. Angiotensin 1-7 mediates renoprotection against diabetic nephropathy by reducing oxidative stress, inf lammation and lipotoxicity. Am J Physiol Renal Physiol 2014 Feb 19 [Epub]. http://dx.doi.org/10.1152/ajprenal.00655.2013.
- Benigni A, Corna D, Zoja C, et al. Disruption of the Ang II type 1 receptor promotes longevity in mice. J Clin Invest 2009;119:524-530. https://doi.org/10.1172/JCI36703
- de Cavanagh EM, Piotrkowski B, Basso N, et al. Enalapril and losartan attenuate mitochondrial dysfunction in aged rats. FASEB J 2003;17:1096-1098. https://doi.org/10.1096/fj.02-0063fje
- Ma LJ, Fogo AB. Model of robust induction of glomerulosclerosis in mice: importance of genetic background. Kidney Int 2003;64:350-355. https://doi.org/10.1046/j.1523-1755.2003.00058.x
- Kuro-o M, Matsumura Y, Aizawa H, et al. Mutation of the mouse klotho gene leads to a syndrome resembling ageing. Nature 1997;390:45-51. https://doi.org/10.1038/36285
- Kuro-o M. Klotho and the aging process. Korean J Intern Med 2011;26:113-122. https://doi.org/10.3904/kjim.2011.26.2.113
- Koh N, Fujimori T, Nishiguchi S, et al. Severely reduced production of klotho in human chronic renal failure kidney. Biochem Biophys Res Commun 2001;280:1015-1020. https://doi.org/10.1006/bbrc.2000.4226
- Kuro-o M. Klotho and aging. Biochim Biophys Acta 2009;1790:1049-1058. https://doi.org/10.1016/j.bbagen.2009.02.005
- Mitani H, Ishizaka N, Aizawa T, et al. In vivo klotho gene transfer ameliorates angiotensin II-induced renal damage. Hypertension 2002;39:838-843. https://doi.org/10.1161/01.HYP.0000013734.33441.EA
- Saito K, Ishizaka N, Mitani H, Ohno M, Nagai R. Iron chelation and a free radical scavenger suppress angiotensin II-induced downregulation of klotho, an anti-aging gene, in rat. FEBS Lett 2003;551:58-62. https://doi.org/10.1016/S0014-5793(03)00894-9
- Karalliedde J, Maltese G, Hill B, Viberti G, Gnudi L. Effect of renin-angiotensin system blockade on soluble Klotho in patients with type 2 diabetes, systolic hypertension, and albuminuria. Clin J Am Soc Nephrol 2013;8:1899-1905. https://doi.org/10.2215/CJN.02700313
- Yoon HE, Ghee JY, Piao S, et al. Angiotensin II blockade upregulates the expression of Klotho, the anti-ageing gene, in an experimental model of chronic cyclosporine nephropathy. Nephrol Dial Transplant 2011;26:800-813. https://doi.org/10.1093/ndt/gfq537
- Yoon HE, Yang CW. Established and newly proposed mechanisms of chronic cyclosporine nephropathy. Korean J Intern Med 2009;24:81-92. https://doi.org/10.3904/kjim.2009.24.2.81
Cited by
- Laparoscopic Sleeve Gastrectomy Prevents the Deterioration of Renal Function in Morbidly Obese Patients Over 40 Years vol.25, pp.5, 2014, https://doi.org/10.1007/s11695-014-1486-5
- Aging, High Altitude, and Blood Pressure: A Complex Relationship vol.16, pp.2, 2014, https://doi.org/10.1089/ham.2015.0010
- Angiotensin-(1-7) Attenuates Kidney Injury Due to Obstructive Nephropathy in Rats vol.10, pp.11, 2014, https://doi.org/10.1371/journal.pone.0142664
- OLDER PEOPLE WITH CHRONIC KIDNEY DISEASE: DEFINITION, AND INFLUENCE OF BIOMARKERS AND MEDICATIONS UPON CARDIOVASCULAR AND RENAL OUTCOMES vol.42, pp.3, 2014, https://doi.org/10.1111/jorc.12164
- Age-Associated Changes in the Vascular Renin-Angiotensin System in Mice vol.2016, pp.None, 2014, https://doi.org/10.1155/2016/6731093
- Angiotensin III increases monocyte chemoattractant protein-1 expression in cultured human proximal tubular epithelial cells vol.31, pp.1, 2014, https://doi.org/10.3904/kjim.2016.31.1.116
- Stop chronic kidney disease progression: Time is approaching vol.5, pp.3, 2016, https://doi.org/10.5527/wjn.v5.i3.258
- Vascular calcification: When should we interfere in chronic kidney disease patients and how? vol.5, pp.5, 2014, https://doi.org/10.5527/wjn.v5.i5.398
- Fluid Management in the Elderly vol.7, pp.4, 2014, https://doi.org/10.1007/s40140-017-0243-4
- Renal Aging: Causes and Consequences vol.28, pp.2, 2014, https://doi.org/10.1681/asn.2015121308
- Age-related Changes in the Sirtuin1-NFE2-related Factor 2 Signaling System in the Kidney vol.92, pp.1, 2014, https://doi.org/10.3904/kjm.2017.92.1.53
- Klotho enhances FoxO3-mediated manganese superoxide dismutase expression by negatively regulating PI3K/AKT pathway during tacrolimus-induced oxidative stress vol.8, pp.8, 2014, https://doi.org/10.1038/cddis.2017.365
- Cellular senescence, senescence-associated secretory phenotype, and chronic kidney disease vol.8, pp.38, 2014, https://doi.org/10.18632/oncotarget.17327
- Safety and efficacy of ipragliflozin in elderly versus non-elderly Japanese patients with type 2 diabetes mellitus: a subgroup analysis of the STELLA-LONG TERM study vol.19, pp.4, 2014, https://doi.org/10.1080/14656566.2018.1434145
- Sex differences in transcriptomic profiles in aged kidney cells of renin lineage vol.10, pp.4, 2014, https://doi.org/10.18632/aging.101416
- Identification of proteins potentially associated with renal aging in rats vol.10, pp.6, 2014, https://doi.org/10.18632/aging.101460
- Effects of Resveratrol on the Renin-Angiotensin System in the Aging Kidney vol.10, pp.11, 2014, https://doi.org/10.3390/nu10111741
- Comparing the impact of older age on outcome in chronic kidney disease of different etiologies: a prospective cohort study vol.31, pp.6, 2018, https://doi.org/10.1007/s40620-018-0529-8
- Validation of a single factor representing the indicators of metabolic syndrome as a continuous measure of metabolic load and its association with health and cognitive function vol.13, pp.12, 2014, https://doi.org/10.1371/journal.pone.0208231
- Role of Klotho in Chronic Calcineurin Inhibitor Nephropathy vol.2019, pp.None, 2014, https://doi.org/10.1155/2019/1825018
- Role of Aldosterone and Mineralocorticoid Receptor in Cardiovascular Aging vol.10, pp.None, 2014, https://doi.org/10.3389/fendo.2019.00584
- Intrarenal Renin-Angiotensin System Involvement in the Pathogenesis of Chronic Progressive Nephropathy-Bridging the Informational Gap Between Disciplines vol.47, pp.7, 2014, https://doi.org/10.1177/0192623319861367
- Safety and effectiveness of ipragliflozin in elderly versus non-elderly Japanese type 2 diabetes mellitus patients: 12 month interim results of the STELLA-LONG TERM study vol.35, pp.11, 2019, https://doi.org/10.1080/03007995.2019.1647503
- Renoprotective Effect of a Dipeptidyl Peptidase-4 Inhibitor on Aging Mice vol.11, pp.3, 2014, https://doi.org/10.14336/ad.2019.0620
- Accelerated Kidney Aging in Diabetes Mellitus vol.2020, pp.None, 2020, https://doi.org/10.1155/2020/1234059
- Sex- and age-dependent differences in the hormone and drinking responses to water deprivation vol.318, pp.3, 2020, https://doi.org/10.1152/ajpregu.00303.2019
- Comment on “Organ‐protective effect of angiotensin‐converting enzyme 2 and its effect on the prognosis of COVID‐19” vol.92, pp.9, 2014, https://doi.org/10.1002/jmv.25848
- Targeting Molecular Mechanism of Vascular Smooth Muscle Senescence Induced by Angiotensin II, A Potential Therapy via Senolytics and Senomorphics vol.21, pp.18, 2014, https://doi.org/10.3390/ijms21186579
- Could Dapagliflozin Attenuate COVID-19 Progression in High-Risk Patients With or Without Diabetes? Behind DARE-19 Concept vol.78, pp.1, 2014, https://doi.org/10.1097/fjc.0000000000001011
- Renin-angiotensin system at the interface of COVID-19 infection vol.890, pp.None, 2014, https://doi.org/10.1016/j.ejphar.2020.173656
- The Tissue Renin-Angiotensin System and Its Role in the Pathogenesis of Major Human Diseases: Quo Vadis? vol.10, pp.3, 2014, https://doi.org/10.3390/cells10030650
- Association between serum potassium and risk of all‐cause mortality among chronic kidney diseases patients: A systematic review and dose-response meta‐analysis of more than one million p vol.9, pp.9, 2021, https://doi.org/10.1002/fsn3.2478
- In Vivo Renin Activity Imaging in the Kidney of Progeroid Ercc1 Mutant Mice vol.22, pp.22, 2014, https://doi.org/10.3390/ijms222212433
- The renin-angiotensin system and cardiovascular autonomic control in aging vol.150, pp.None, 2014, https://doi.org/10.1016/j.peptides.2021.170733