DOI QR코드

DOI QR Code

Modifiers of TGF-${\beta}1$ effector function as novel therapeutic targets of pulmonary fibrosis

  • Lee, Chang-Min (Section of Pulmonary and Critical Care Medicine, Yale University School of Medicine) ;
  • Park, Jin Wook (Section of Pulmonary and Critical Care Medicine, Yale University School of Medicine) ;
  • Cho, Won-Kyung (Section of Pulmonary and Critical Care Medicine, Yale University School of Medicine) ;
  • Zhou, Yang (Section of Pulmonary and Critical Care Medicine, Yale University School of Medicine) ;
  • Han, Boram (Bioneer Corporation) ;
  • Yoon, Pyoung Oh (Bioneer Corporation) ;
  • Chae, Jeiwook (Bioneer Corporation) ;
  • Elias, Jack A. (Dean of Medicine and Biological Science, Brown University, Warren Alpert School of Medicine) ;
  • Lee, Chun Geun (Section of Pulmonary and Critical Care Medicine, Yale University School of Medicine)
  • Received : 2014.03.31
  • Accepted : 2014.04.02
  • Published : 2014.05.01

Abstract

Pulmonary fibrosis is a fatal progressive disease with no effective therapy. Transforming growth factor (TGF)-${\beta}1$ has long been regarded as a central mediator of tissue fibrosis that involves multiple organs including skin, liver, kidney, and lung. Thus, TGF-${\beta}1$ and its signaling pathways have been attractive therapeutic targets for the development of antifibrotic drugs. However, the essential biological functions of TGF-${\beta}1$ in maintaining normal immune and cellular homeostasis significantly limit the effectiveness of TGF-${\beta}1$-directed therapeutic approaches. Thus, targeting downstream mediators or signaling molecules of TGF-${\beta}1$ could be an alternative approach that selectively inhibits TGF-${\beta}1$-stimulated fibrotic tissue response while preserving major physiological function of TGF-${\beta}1$. Recent studies from our laboratory revealed that TGF-${\beta}1$ crosstalk with epidermal growth factor receptor (EGFR) signaling by induction of amphiregulin, a ligand of EGFR, plays a critical role in the development or progression of pulmonary fibrosis. In addition, chitotriosidase, a true chitinase in humans, has been identified to have modulating capacity of TGF-${\beta}1$ signaling as a new biomarker and therapeutic target of scleroderma-associated pulmonary fibrosis. These newly identified modifiers of TGF-${\beta}1$ effector function significantly enhance the effectiveness and flexibility in targeting pulmonary fibrosis in which TGF-${\beta}1$ plays a significant role.

Keywords

References

  1. Wynn TA. Common and unique mechanisms regulate fibrosis in various fibroproliferative diseases. J Clin Invest 2007;117:524-529. https://doi.org/10.1172/JCI31487
  2. Raghu G. Interstitial lung diseases: a clinical overview and general approach. In: Fishman AP, Elias JA, Fishman JA, Grippi MA, Senior RM, Pack AI, eds. Fishman's Pulmonary Diseases and Disorders. New York: Mc-Graw Hill, 1998:1037-1053.
  3. Krein PM, Winston BW. Roles for insulin-like growth factor I and transforming growth factor-beta in fibrotic lung disease. Chest 2002;122(6 Suppl):289S-293S. https://doi.org/10.1378/chest.122.6_suppl.289S
  4. Selman M, King TE, Pardo A; American Thoracic Society; European Respiratory Society; American College of Chest Physicians. Idiopathic pulmonary fibrosis: prevailing and evolving hypotheses about its pathogenesis and implications for therapy. Ann Intern Med 2001;134:136-151. https://doi.org/10.7326/0003-4819-134-2-200101160-00015
  5. Gharaee-Kermani M, Hu B, Phan SH, Gyetko MR. Recent advances in molecular targets and treatment of idiopathic pulmonary f ibrosis: focus on TGFbeta signaling and the myof ibroblast. Curr Med Chem 2009;16:1400-1417. https://doi.org/10.2174/092986709787846497
  6. Hardie WD, Glasser SW, Hagood JS. Emerging concepts in the pathogenesis of lung fibrosis. Am J Pathol 2009;175:3-16. https://doi.org/10.2353/ajpath.2009.081170
  7. Strieter RM, Keeley EC, Burdick MD, Mehrad B. The role of circulating mesenchymal progenitor cells, fibrocytes, in promoting pulmonary fibrosis. Trans Am Clin Climatol Assoc 2009;120:49-59.
  8. Yue X, Shan B, Lasky JA. TGF-$\beta$: titan of lung fibrogenesis. Curr Enzym Inhib 2010;6(2).
  9. Fernandez IE, Eickelberg O. New cellular and molecular mechanisms of lung injury and fibrosis in idiopathic pulmonary fibrosis. Lancet 2012;380:680-688. https://doi.org/10.1016/S0140-6736(12)61144-1
  10. Fernandez IE, Eickelberg O. The impact of TGF-$\beta$ on lung fibrosis: from targeting to biomarkers. Proc Am Thorac Soc 2012;9:111-116. https://doi.org/10.1513/pats.201203-023AW
  11. Bowen T, Jenkins RH, Fraser DJ. MicroRNAs, transforming growth factor beta-1, and tissue f ibrosis. J Pathol 2013;229:274-285. https://doi.org/10.1002/path.4119
  12. Samarakoon R, Overstreet JM, Higgins PJ. TGF-$\beta$ signaling in tissue fibrosis: redox controls, target genes and therapeutic opportunities. Cell Signal 2013;25:264-268. https://doi.org/10.1016/j.cellsig.2012.10.003
  13. Akhurst RJ, Hata A. Targeting the TGF$\beta$ signalling pathway in disease. Nat Rev Drug Discov 2012;11:790-811. https://doi.org/10.1038/nrd3810
  14. Zhou L, Dey CR, Wert SE, Whitsett JA. Arrested lung morphogenesis in transgenic mice bearing an SP-CTGF- beta 1 chimeric gene. Dev Biol 1996;175:227-238. https://doi.org/10.1006/dbio.1996.0110
  15. Lee CG, Cho SJ, Kang MJ, et al. Early growth response gene 1-mediated apoptosis is essential for transforming growth factor beta1-induced pulmonary fibrosis. J Exp Med 2004;200:377-389. https://doi.org/10.1084/jem.20040104
  16. Pulichino AM, Wang IM, Caron A, et al. Identification of transforming growth factor beta1-driven genetic programs of acute lung fibrosis. Am J Respir Cell Mol Biol 2008;39:324-336. https://doi.org/10.1165/rcmb.2007-0186OC
  17. Zhou Y, Lee JY, Lee CM, et al. Amphiregulin, an epidermal growth factor receptor ligand, plays an essential role in the pathogenesis of transforming growth factor-$\beta$-induced pulmonary f ibrosis. J Biol Chem 2012;287:41991-42000. https://doi.org/10.1074/jbc.M112.356824
  18. Lee CG, Herzog EL, Ahangari F, et al. Chitinase 1 is a biomarker for and therapeutic target in scleroderma-associated interstitial lung disease that augments TGF-${\beta}1$ signaling. J Immunol 2012;189:2635-2644. https://doi.org/10.4049/jimmunol.1201115
  19. Khalil N, O'Connor RN, Flanders KC, Unruh H. TGFbeta 1, but not TGF-beta 2 or TGF-beta 3, is differentially present in epithelial cells of advanced pulmonary fibrosis: an immunohistochemical study. Am J Respir Cell Mol Biol 1996;14:131-138. https://doi.org/10.1165/ajrcmb.14.2.8630262
  20. Khalil N, Parekh TV, O'Connor R, et al. Regulation of the effects of TGF-beta 1 by activation of latent TGFbeta 1 and differential expression of TGF-beta receptors (T beta R-I and T beta R-II) in idiopathic pulmonary fibrosis. Thorax 2001;56:907-915. https://doi.org/10.1136/thorax.56.12.907
  21. Xu YD, Hua J, Mui A, O'Connor R, Grotendorst G, Khalil N. Release of biologically active TGF-beta1 by alveolar epithelial cells results in pulmonary fibrosis. Am J Physiol Lung Cell Mol Physiol 2003;285:L527-L539. https://doi.org/10.1152/ajplung.00298.2002
  22. Yehualaeshet T, O'Connor R, Begleiter A, Murphy-Ullrich JE, Silverstein R, Khalil N. A CD36 synthetic peptide inhibits bleomycin-induced pulmonary inflammation and connective tissue synthesis in the rat. Am J Respir Cell Mol Biol 2000;23:204-212. https://doi.org/10.1165/ajrcmb.23.2.4089
  23. Nakao A, Fujii M, Matsumura R, et al. Transient gene transfer and expression of Smad7 prevents bleomycininduced lung fibrosis in mice. J Clin Invest 1999;104:5-11. https://doi.org/10.1172/JCI6094
  24. Sime PJ, Xing Z, Graham FL, Csaky KG, Gauldie J. Adenovector- mediated gene transfer of active transforming growth factor-beta1 induces prolonged severe fibrosis in rat lung. J Clin Invest 1997;100:768-776. https://doi.org/10.1172/JCI119590
  25. Kelly M, Kolb M, Bonniaud P, Gauldie J. Re-evaluation of fibrogenic cytokines in lung fibrosis. Curr Pharm Des 2003;9:39-49. https://doi.org/10.2174/1381612033392341
  26. Kuwano K, Maeyama T, Inoshima I, et al. Increased circulating levels of soluble Fas ligand are correlated with disease activity in patients with fibrosing lung diseases. Respirology 2002;7:15-21. https://doi.org/10.1046/j.1440-1843.2002.00369.x
  27. Kuwano K, Miyazaki H, Hagimoto N, et al. The involvement of Fas-Fas ligand pathway in fibrosing lung diseases. Am J Respir Cell Mol Biol 1999;20:53-60. https://doi.org/10.1165/ajrcmb.20.1.2941
  28. Kuwano K, Kunitake R, Kawasaki M, et al. P21Waf1/Cip1/Sdi1 and p53 expression in association with DNA strand breaks in idiopathic pulmonary fibrosis. Am J Respir Crit Care Med 1996;154:477-483. https://doi.org/10.1164/ajrccm.154.2.8756825
  29. Kuwano K, Hagimoto N, Kawasaki M, et al. Essential roles of the Fas-Fas ligand pathway in the development of pulmonary fibrosis. J Clin Invest 1999;104:13-19. https://doi.org/10.1172/JCI5628
  30. Ling E, Robinson DS. Transforming growth factor-beta1: its anti-inflammatory and pro-fibrotic effects. Clin Exp Allergy 2002;32:175-178. https://doi.org/10.1046/j.1365-2222.2002.01287.x
  31. Flanders KC, Sullivan CD, Fujii M, et al. Mice lacking Smad3 are protected against cutaneous injury induced by ionizing radiation. Am J Pathol 2002;160:1057-1068. https://doi.org/10.1016/S0002-9440(10)64926-7
  32. Akhurst RJ, Derynck R. TGF-beta signaling in cancer: a double-edged sword. Trends Cell Biol 2001;11:S44-S51.
  33. Roberts AB, Piek E, Bottinger EP, Ashcroft G, Mitchell JB, Flanders KC. Is Smad3 a major player in signal transduction pathways leading to fibrogenesis? Chest 2001;120(1 Suppl):43S-47S. https://doi.org/10.1378/chest.120.1_suppl.S43-a
  34. Fargeas C, Wu CY, Nakajima T, Cox D, Nutman T, Delespesse G. Differential effect of transforming growth factor beta on the synthesis of Th1- and Th2-like lymphokines by human T lymphocytes. Eur J Immunol 1992;22:2173-2176. https://doi.org/10.1002/eji.1830220833
  35. Letterio JJ, Roberts AB. Regulation of immune responses by TGF-beta. Annu Rev Immunol 1998;16:137-161. https://doi.org/10.1146/annurev.immunol.16.1.137
  36. Zhang X, Giangreco L, Broome HE, Dargan CM, Swain SL. Control of CD4 effector fate: transforming growth factor beta 1 and interleukin 2 synergize to prevent apoptosis and promote effector expansion. J Exp Med 1995;182:699-709. https://doi.org/10.1084/jem.182.3.699
  37. Lee CG, Homer RJ, Zhu Z, et al. Interleukin-13 induces tissue fibrosis by selectively stimulating and activating transforming growth factor beta(1). J Exp Med 2001;194:809-821. https://doi.org/10.1084/jem.194.6.809
  38. Martin M, Lefaix J, Delanian S. TGF-beta1 and radiation fibrosis: a master switch and a specific therapeutic target? Int J Radiat Oncol Biol Phys 2000;47:277-290. https://doi.org/10.1016/S0360-3016(00)00435-1
  39. Kalluri R, Sukhatme VP. Fibrosis and angiogenesis. Curr Opin Nephrol Hypertens 2000;9:413-418. https://doi.org/10.1097/00041552-200007000-00013
  40. Pittet JF, Griffiths MJ, Geiser T, et al. TGF-beta is a critical mediator of acute lung injury. J Clin Invest 2001;107:1537-1544. https://doi.org/10.1172/JCI11963
  41. Fukuda H, Motohiro T, Nakai K, et al. Negative effect of transforming growth factor-beta-1 on intestinal anastomotic tissue regeneration. Eur Surg Res 2001;33:388-394. https://doi.org/10.1159/000049735
  42. Chan T, Ghahary A, Demare J, et al. Development, characterization, and wound healing of the keratin 14 promoted transforming growth factor-beta1 transgenic mouse. Wound Repair Regen 2002;10:177-187. https://doi.org/10.1046/j.1524-475X.2002.11101.x
  43. Amendt C, Mann A, Schirmacher P, Blessing M. Resistance of keratinocytes to TGFbeta-mediated growth restriction and apoptosis induction accelerates re-epithelialization in skin wounds. J Cell Sci 2002;115:2189- 2198.
  44. Cho W, Chen N, Tang C, Elias JA, Lee C. Arginase 2 plays an essential role in TGF-β-induced pulmonary fibrosis. Am J Respir Crit Care Med 2010;181:A2700.
  45. Kolb M, Bonniaud P, Galt T, et al. Differences in the fibrogenic response after transfer of active transforming growth factor-beta1 gene to lungs of "fibrosis-prone" and "fibrosis-resistant" mouse strains. Am J Respir Cell Mol Biol 2002;27:141-150. https://doi.org/10.1165/ajrcmb.27.2.4674
  46. Ward WF, Sharplin J, Franko AJ, Hinz JM. Radiationinduced pulmonary endothelial dysfunction and hydroxyproline accumulation in four strains of mice. Radiat Res 1989;120:113-120. https://doi.org/10.2307/3577638
  47. Brass DM, Hoyle GW, Poovey HG, Liu JY, Brody AR. Reduced tumor necrosis factor-alpha and transforming growth factor-beta1 expression in the lungs of inbred mice that fail to develop fibroproliferative lesions consequent to asbestos exposure. Am J Pathol 1999;154:853-862. https://doi.org/10.1016/S0002-9440(10)65332-1
  48. Deheuninck J, Luo K. Ski and SnoN, potent negative regulators of TGF-beta signaling. Cell Res 2009;19:47-57. https://doi.org/10.1038/cr.2008.324
  49. Moustakas A, Souchelnytskyi S, Heldin CH. Smad regulation in TGF-beta signal transduction. J Cell Sci 2001;114:4359-4369.
  50. Derynck R, Zhang YE. Smad-dependent and Smadindependent pathways in TGF-beta family signalling. Nature 2003;425:577-584. https://doi.org/10.1038/nature02006
  51. Ishii Y, Fujimoto S, Fukuda T. Gefitinib prevents bleomycin- induced lung fibrosis in mice. Am J Respir Crit Care Med 2006;174:550-556. https://doi.org/10.1164/rccm.200509-1534OC
  52. Laato M, Kahari VM, Niinikoski J, Vuorio E. Epidermal growth factor increases collagen production in granulation tissue by stimulation of fibroblast proliferation and not by activation of procollagen genes. Biochem J 1987;247:385-388. https://doi.org/10.1042/bj2470385
  53. Samarakoon R, Dobberfuhl AD, Cooley C, et al. Induction of renal fibrotic genes by TGF-$\beta$1 requires EGFR activation, p53 and reactive oxygen species. Cell Signal 2013;25:2198-2209. https://doi.org/10.1016/j.cellsig.2013.07.007
  54. Bussink AP, Speijer D, Aerts JM, Boot RG. Evolution of mammalian chitinase(-like) members of family 18 glycosyl hydrolases. Genetics 2007;177:959-970. https://doi.org/10.1534/genetics.107.075846
  55. Funkhouser JD, Aronson NN Jr. Chitinase family GH18: evolutionary insights from the genomic history of a diverse protein family. BMC Evol Biol 2007;7:96. https://doi.org/10.1186/1471-2148-7-96
  56. Chang NC, Hung SI, Hwa KY, et al. A macrophage protein, Ym1, transiently expressed during inflammation is a novel mammalian lectin. J Biol Chem 2001;276:17497-17506. https://doi.org/10.1074/jbc.M010417200
  57. Bleau G, Massicotte F, Merlen Y, Boisvert C. Mammalian chitinase-like proteins. EXS 1999;87:211-221.
  58. Di Rosa M, Musumeci M, Scuto A, Musumeci S, Malaguarnera L. Effect of interferon-gamma, interleukin- 10, lipopolysaccharide and tumor necrosis factoralpha on chitotriosidase synthesis in human macrophages. Clin Chem Lab Med 2005;43:499-502.
  59. Malaguarnera L, Musumeci M, Di Rosa M, Scuto A, Musumeci S. Interferon-gamma, tumor necrosis factoralpha, and lipopolysaccharide promote chitotriosidase gene expression in human macrophages. J Clin Lab Anal 2005;19:128-132. https://doi.org/10.1002/jcla.20063
  60. van Eijk M, van Roomen CP, Renkema GH, et al. Characterization of human phagocyte-derived chitotriosidase, a component of innate immunity. Int Immunol 2005;17:1505-1512. https://doi.org/10.1093/intimm/dxh328
  61. Gordon-Thomson C, Kumari A, Tomkins L, et al. Chitotriosidase and gene therapy for fungal infections. Cell Mol Life Sci 2009;66:1116-1125. https://doi.org/10.1007/s00018-009-8765-7
  62. Labadaridis I, Dimitriou E, Theodorakis M, Kafalidis G, Velegraki A, Michelakakis H. Chitotriosidase in neonates with fungal and bacterial infections. Arch Dis Child Fetal Neonatal Ed 2005;90:F531-F532. https://doi.org/10.1136/adc.2004.051284
  63. Brunner J, Scholl-Burgi S, Prelog M, Zimmerhackl LB. Chitotriosidase as a marker of disease activity in sarcoidosis. Rheumatol Int 2007;27:1185-1186. https://doi.org/10.1007/s00296-007-0318-5
  64. Boot RG, Hollak CE, Verhoek M, Alberts C, Jonkers RE, Aerts JM. Plasma chitotriosidase and CCL18 as surrogate markers for granulomatous macrophages in sarcoidosis. Clin Chim Acta 2010;411:31-36. https://doi.org/10.1016/j.cca.2009.09.034
  65. Bargagli E, Margollicci M, Luddi A, et al. Chitotriosidase activity in patients with interstitial lung diseases. Respir Med 2007;101:2176-2181. https://doi.org/10.1016/j.rmed.2007.05.008
  66. Bargagli E, Margollicci M, Nikiforakis N, et al. Chitotriosidase activity in the serum of patients with sarcoidosis and pulmonary tuberculosis. Respiration 2007;74:548-552. https://doi.org/10.1159/000100555
  67. Ihn H, Yamane K, Kubo M, Tamaki K. Blockade of endogenous transforming growth factor beta signaling prevents up-regulated collagen synthesis in scleroderma fibroblasts: association with increased expression of transforming growth factor beta receptors. Arthritis Rheum 2001;44:474-480. https://doi.org/10.1002/1529-0131(200102)44:2<474::AID-ANR67>3.0.CO;2-#
  68. Asano Y, Ihn H, Yamane K, Jinnin M, Mimura Y, Tamaki K. Involvement of alphavbeta5 integrin-mediated activation of latent transforming growth factor beta1 in autocrine transforming growth factor beta signaling in systemic sclerosis fibroblasts. Arthritis Rheum 2005;52:2897-2905. https://doi.org/10.1002/art.21246
  69. Bozyk PD, Moore BB. Prostaglandin E2 and the pathogenesis of pulmonary fibrosis. Am J Respir Cell Mol Biol 2011;45:445-452. https://doi.org/10.1165/rcmb.2011-0025RT
  70. Miyoshi K, Yanagi S, Kawahara K, et al. Epithelial Pten controls acute lung injury and fibrosis by regulating alveolar epithelial cell integrity. Am J Respir Crit Care Med 2013;187:262-275. https://doi.org/10.1164/rccm.201205-0851OC
  71. Kang HR, Cho SJ, Lee CG, Homer RJ, Elias JA. Transforming growth factor (TGF)-beta1 stimulates pulmonary fibrosis and inf lammation via a Bax-dependent, bid-activated pathway that involves matrix metalloproteinase-J Biol Chem 2007;282:7723-7732. https://doi.org/10.1074/jbc.M610764200
  72. Kang HR, Lee CG, Homer RJ, Elias JA. Semaphorin 7A plays a critical role in TGF-beta1-induced pulmonary fibrosis. J Exp Med 2007;204:1083-1093. https://doi.org/10.1084/jem.20061273
  73. Henderson NC, Arnold TD, Katamura Y, et al. Targeting of αv integrin identifies a core molecular pathway that regulates f ibrosis in several organs. Nat Med 2013;19:1617-1624. https://doi.org/10.1038/nm.3282
  74. Barry-Hamilton V, Spangler R, Marshall D, et al. Allosteric inhibition of lysyl oxidase-like-2 impedes the development of a pathologic microenvironment. Nat Med 2010;16:1009-1017. https://doi.org/10.1038/nm.2208
  75. Wang R, Ibarra-Sunga O, Verlinski L, Pick R, Uhal BD. Abrogation of bleomycin-induced epithelial apoptosis and lung fibrosis by captopril or by a caspase inhibitor. Am J Physiol Lung Cell Mol Physiol 2000;279:L143-L151. https://doi.org/10.1152/ajplung.2000.279.1.L143
  76. Toonkel RL, Hare JM, Matthay MA, Glassberg MK. Mesenchymal stem cells and idiopathic pulmonary fibrosis. Potential for clinical testing. Am J Respir Crit Care Med 2013;188:133-140. https://doi.org/10.1164/rccm.201207-1204PP

Cited by

  1. Promising new treatment targets in patients with fibrosing lung disorders vol.2, pp.11, 2014, https://doi.org/10.12998/wjcc.v2.i11.668
  2. Blocking the Wnt/β-Catenin Pathway by Lentivirus-Mediated Short Hairpin RNA Targeting β-Catenin Gene Suppresses Silica-Induced Lung Fibrosis in Mice vol.12, pp.9, 2015, https://doi.org/10.3390/ijerph120910739
  3. TGF-β1-Induced Pulmonary Fibroblasts Proliferation and Differentiation Are Inhibited by Antisense Oligodeoxynucleotide of Basic Fibroblast Growth Factor vol.80, pp.3, 2014, https://doi.org/10.1508/cytologia.80.331
  4. Protective effects of ulinastatin and methylprednisolone against radiation-induced lung injury in mice vol.57, pp.5, 2014, https://doi.org/10.1093/jrr/rrw036
  5. Prevention and Therapeutic Effects and Mechanisms of Tanshinone IIA Sodium Sulfonate on Acute Liver Injury Mice Model vol.2016, pp.None, 2014, https://doi.org/10.1155/2016/4097398
  6. Protective Effect of Ginsenoside Rg1 on Bleomycin-Induced Pulmonary Fibrosis in Rats: Involvement of Caveolin-1 and TGF-β1 Signal Pathway vol.39, pp.8, 2014, https://doi.org/10.1248/bpb.b16-00046
  7. Delivery of RNAi Therapeutics to the Airways—From Bench to Bedside vol.21, pp.10, 2016, https://doi.org/10.3390/molecules21091249
  8. Bacillus Calmette-Guerin alleviates airway inflammation and remodeling by preventing TGF-β1 induced epithelial–mesenchymal transition vol.13, pp.8, 2014, https://doi.org/10.1080/21645515.2017.1313366
  9. The Processes and Mechanisms of Cardiac and Pulmonary Fibrosis vol.8, pp.None, 2014, https://doi.org/10.3389/fphys.2017.00777
  10. Bach1 siRNA attenuates bleomycin-induced pulmonary fibrosis by modulating oxidative stress in mice vol.39, pp.1, 2014, https://doi.org/10.3892/ijmm.2016.2823
  11. Microencapsulation of Lefty-secreting engineered cells for pulmonary fibrosis therapy in mice vol.312, pp.5, 2014, https://doi.org/10.1152/ajplung.00295.2016
  12. Pirfenidone attenuates bleomycin-induced pulmonary fibrosis in mice by regulating Nrf2/Bach1 equilibrium vol.17, pp.None, 2014, https://doi.org/10.1186/s12890-017-0405-7
  13. Chimaphilin inhibits human osteosarcoma cell invasion and metastasis through suppressing the TGF-β1-induced epithelial-to-mesenchymal transition markers via PI-3K/Akt, ERK1/2, and Smad signaling vol.96, pp.1, 2014, https://doi.org/10.1139/cjpp-2016-0522
  14. Autophagy and the unfolded protein response promote profibrotic effects of TGF-β1 in human lung fibroblasts vol.314, pp.3, 2014, https://doi.org/10.1152/ajplung.00372.2017
  15. Dexamethasone reduces serum level of IL-17 in Bleomycin-A5-induced rats model of pulmonary fibrosis vol.46, pp.4, 2014, https://doi.org/10.1080/21691401.2017.1339051
  16. Upregulated miR-29c suppresses silica-induced lung fibrosis through the Wnt/β-catenin pathway in mice vol.37, pp.9, 2014, https://doi.org/10.1177/0960327117741750
  17. Biomarkers of skin and lung fibrosis in systemic sclerosis vol.15, pp.11, 2014, https://doi.org/10.1080/1744666x.2020.1670062
  18. Cellular senescence and EMT crosstalk in bleomycin‐induced pathogenesis of pulmonary fibrosis-an in vitro analysis vol.44, pp.2, 2014, https://doi.org/10.1002/cbin.11248
  19. Amelioration of bleomycin-induced pulmonary fibrosis via TGF-β-induced Smad and non-Smad signaling pathways in galectin-9-deficient mice and fibroblast cells vol.27, pp.1, 2014, https://doi.org/10.1186/s12929-020-0616-8
  20. Protective and anti-inflammatory effect of selenium nano-particles against bleomycin-induced pulmonary injury in male rats vol.44, pp.1, 2014, https://doi.org/10.1080/01480545.2018.1560466
  21. Targeted inhibition of β-catenin alleviates airway inflammation and remodeling in asthma via modulating the profibrotic and anti-inflammatory actions of transforming growth factor-β vol.15, pp.None, 2021, https://doi.org/10.1177/1753466620981858
  22. New Insights into Pathomechanisms and Treatment Possibilities for Lung Silicosis vol.22, pp.8, 2014, https://doi.org/10.3390/ijms22084162
  23. In vivo silencing of amphiregulin by a novel effective Self-Assembled-Micelle inhibitory RNA ameliorates renal fibrosis via inhibition of EGFR signals vol.11, pp.1, 2014, https://doi.org/10.1038/s41598-021-81726-2