References
- Wynn TA. Common and unique mechanisms regulate fibrosis in various fibroproliferative diseases. J Clin Invest 2007;117:524-529. https://doi.org/10.1172/JCI31487
- Raghu G. Interstitial lung diseases: a clinical overview and general approach. In: Fishman AP, Elias JA, Fishman JA, Grippi MA, Senior RM, Pack AI, eds. Fishman's Pulmonary Diseases and Disorders. New York: Mc-Graw Hill, 1998:1037-1053.
- Krein PM, Winston BW. Roles for insulin-like growth factor I and transforming growth factor-beta in fibrotic lung disease. Chest 2002;122(6 Suppl):289S-293S. https://doi.org/10.1378/chest.122.6_suppl.289S
- Selman M, King TE, Pardo A; American Thoracic Society; European Respiratory Society; American College of Chest Physicians. Idiopathic pulmonary fibrosis: prevailing and evolving hypotheses about its pathogenesis and implications for therapy. Ann Intern Med 2001;134:136-151. https://doi.org/10.7326/0003-4819-134-2-200101160-00015
- Gharaee-Kermani M, Hu B, Phan SH, Gyetko MR. Recent advances in molecular targets and treatment of idiopathic pulmonary f ibrosis: focus on TGFbeta signaling and the myof ibroblast. Curr Med Chem 2009;16:1400-1417. https://doi.org/10.2174/092986709787846497
- Hardie WD, Glasser SW, Hagood JS. Emerging concepts in the pathogenesis of lung fibrosis. Am J Pathol 2009;175:3-16. https://doi.org/10.2353/ajpath.2009.081170
- Strieter RM, Keeley EC, Burdick MD, Mehrad B. The role of circulating mesenchymal progenitor cells, fibrocytes, in promoting pulmonary fibrosis. Trans Am Clin Climatol Assoc 2009;120:49-59.
-
Yue X, Shan B, Lasky JA. TGF-
$\beta$ : titan of lung fibrogenesis. Curr Enzym Inhib 2010;6(2). - Fernandez IE, Eickelberg O. New cellular and molecular mechanisms of lung injury and fibrosis in idiopathic pulmonary fibrosis. Lancet 2012;380:680-688. https://doi.org/10.1016/S0140-6736(12)61144-1
-
Fernandez IE, Eickelberg O. The impact of TGF-
$\beta$ on lung fibrosis: from targeting to biomarkers. Proc Am Thorac Soc 2012;9:111-116. https://doi.org/10.1513/pats.201203-023AW - Bowen T, Jenkins RH, Fraser DJ. MicroRNAs, transforming growth factor beta-1, and tissue f ibrosis. J Pathol 2013;229:274-285. https://doi.org/10.1002/path.4119
-
Samarakoon R, Overstreet JM, Higgins PJ. TGF-
$\beta$ signaling in tissue fibrosis: redox controls, target genes and therapeutic opportunities. Cell Signal 2013;25:264-268. https://doi.org/10.1016/j.cellsig.2012.10.003 -
Akhurst RJ, Hata A. Targeting the TGF
$\beta$ signalling pathway in disease. Nat Rev Drug Discov 2012;11:790-811. https://doi.org/10.1038/nrd3810 - Zhou L, Dey CR, Wert SE, Whitsett JA. Arrested lung morphogenesis in transgenic mice bearing an SP-CTGF- beta 1 chimeric gene. Dev Biol 1996;175:227-238. https://doi.org/10.1006/dbio.1996.0110
- Lee CG, Cho SJ, Kang MJ, et al. Early growth response gene 1-mediated apoptosis is essential for transforming growth factor beta1-induced pulmonary fibrosis. J Exp Med 2004;200:377-389. https://doi.org/10.1084/jem.20040104
- Pulichino AM, Wang IM, Caron A, et al. Identification of transforming growth factor beta1-driven genetic programs of acute lung fibrosis. Am J Respir Cell Mol Biol 2008;39:324-336. https://doi.org/10.1165/rcmb.2007-0186OC
-
Zhou Y, Lee JY, Lee CM, et al. Amphiregulin, an epidermal growth factor receptor ligand, plays an essential role in the pathogenesis of transforming growth factor-
$\beta$ -induced pulmonary f ibrosis. J Biol Chem 2012;287:41991-42000. https://doi.org/10.1074/jbc.M112.356824 -
Lee CG, Herzog EL, Ahangari F, et al. Chitinase 1 is a biomarker for and therapeutic target in scleroderma-associated interstitial lung disease that augments TGF-
${\beta}1$ signaling. J Immunol 2012;189:2635-2644. https://doi.org/10.4049/jimmunol.1201115 - Khalil N, O'Connor RN, Flanders KC, Unruh H. TGFbeta 1, but not TGF-beta 2 or TGF-beta 3, is differentially present in epithelial cells of advanced pulmonary fibrosis: an immunohistochemical study. Am J Respir Cell Mol Biol 1996;14:131-138. https://doi.org/10.1165/ajrcmb.14.2.8630262
- Khalil N, Parekh TV, O'Connor R, et al. Regulation of the effects of TGF-beta 1 by activation of latent TGFbeta 1 and differential expression of TGF-beta receptors (T beta R-I and T beta R-II) in idiopathic pulmonary fibrosis. Thorax 2001;56:907-915. https://doi.org/10.1136/thorax.56.12.907
- Xu YD, Hua J, Mui A, O'Connor R, Grotendorst G, Khalil N. Release of biologically active TGF-beta1 by alveolar epithelial cells results in pulmonary fibrosis. Am J Physiol Lung Cell Mol Physiol 2003;285:L527-L539. https://doi.org/10.1152/ajplung.00298.2002
- Yehualaeshet T, O'Connor R, Begleiter A, Murphy-Ullrich JE, Silverstein R, Khalil N. A CD36 synthetic peptide inhibits bleomycin-induced pulmonary inflammation and connective tissue synthesis in the rat. Am J Respir Cell Mol Biol 2000;23:204-212. https://doi.org/10.1165/ajrcmb.23.2.4089
- Nakao A, Fujii M, Matsumura R, et al. Transient gene transfer and expression of Smad7 prevents bleomycininduced lung fibrosis in mice. J Clin Invest 1999;104:5-11. https://doi.org/10.1172/JCI6094
- Sime PJ, Xing Z, Graham FL, Csaky KG, Gauldie J. Adenovector- mediated gene transfer of active transforming growth factor-beta1 induces prolonged severe fibrosis in rat lung. J Clin Invest 1997;100:768-776. https://doi.org/10.1172/JCI119590
- Kelly M, Kolb M, Bonniaud P, Gauldie J. Re-evaluation of fibrogenic cytokines in lung fibrosis. Curr Pharm Des 2003;9:39-49. https://doi.org/10.2174/1381612033392341
- Kuwano K, Maeyama T, Inoshima I, et al. Increased circulating levels of soluble Fas ligand are correlated with disease activity in patients with fibrosing lung diseases. Respirology 2002;7:15-21. https://doi.org/10.1046/j.1440-1843.2002.00369.x
- Kuwano K, Miyazaki H, Hagimoto N, et al. The involvement of Fas-Fas ligand pathway in fibrosing lung diseases. Am J Respir Cell Mol Biol 1999;20:53-60. https://doi.org/10.1165/ajrcmb.20.1.2941
- Kuwano K, Kunitake R, Kawasaki M, et al. P21Waf1/Cip1/Sdi1 and p53 expression in association with DNA strand breaks in idiopathic pulmonary fibrosis. Am J Respir Crit Care Med 1996;154:477-483. https://doi.org/10.1164/ajrccm.154.2.8756825
- Kuwano K, Hagimoto N, Kawasaki M, et al. Essential roles of the Fas-Fas ligand pathway in the development of pulmonary fibrosis. J Clin Invest 1999;104:13-19. https://doi.org/10.1172/JCI5628
- Ling E, Robinson DS. Transforming growth factor-beta1: its anti-inflammatory and pro-fibrotic effects. Clin Exp Allergy 2002;32:175-178. https://doi.org/10.1046/j.1365-2222.2002.01287.x
- Flanders KC, Sullivan CD, Fujii M, et al. Mice lacking Smad3 are protected against cutaneous injury induced by ionizing radiation. Am J Pathol 2002;160:1057-1068. https://doi.org/10.1016/S0002-9440(10)64926-7
- Akhurst RJ, Derynck R. TGF-beta signaling in cancer: a double-edged sword. Trends Cell Biol 2001;11:S44-S51.
- Roberts AB, Piek E, Bottinger EP, Ashcroft G, Mitchell JB, Flanders KC. Is Smad3 a major player in signal transduction pathways leading to fibrogenesis? Chest 2001;120(1 Suppl):43S-47S. https://doi.org/10.1378/chest.120.1_suppl.S43-a
- Fargeas C, Wu CY, Nakajima T, Cox D, Nutman T, Delespesse G. Differential effect of transforming growth factor beta on the synthesis of Th1- and Th2-like lymphokines by human T lymphocytes. Eur J Immunol 1992;22:2173-2176. https://doi.org/10.1002/eji.1830220833
- Letterio JJ, Roberts AB. Regulation of immune responses by TGF-beta. Annu Rev Immunol 1998;16:137-161. https://doi.org/10.1146/annurev.immunol.16.1.137
- Zhang X, Giangreco L, Broome HE, Dargan CM, Swain SL. Control of CD4 effector fate: transforming growth factor beta 1 and interleukin 2 synergize to prevent apoptosis and promote effector expansion. J Exp Med 1995;182:699-709. https://doi.org/10.1084/jem.182.3.699
- Lee CG, Homer RJ, Zhu Z, et al. Interleukin-13 induces tissue fibrosis by selectively stimulating and activating transforming growth factor beta(1). J Exp Med 2001;194:809-821. https://doi.org/10.1084/jem.194.6.809
- Martin M, Lefaix J, Delanian S. TGF-beta1 and radiation fibrosis: a master switch and a specific therapeutic target? Int J Radiat Oncol Biol Phys 2000;47:277-290. https://doi.org/10.1016/S0360-3016(00)00435-1
- Kalluri R, Sukhatme VP. Fibrosis and angiogenesis. Curr Opin Nephrol Hypertens 2000;9:413-418. https://doi.org/10.1097/00041552-200007000-00013
- Pittet JF, Griffiths MJ, Geiser T, et al. TGF-beta is a critical mediator of acute lung injury. J Clin Invest 2001;107:1537-1544. https://doi.org/10.1172/JCI11963
- Fukuda H, Motohiro T, Nakai K, et al. Negative effect of transforming growth factor-beta-1 on intestinal anastomotic tissue regeneration. Eur Surg Res 2001;33:388-394. https://doi.org/10.1159/000049735
- Chan T, Ghahary A, Demare J, et al. Development, characterization, and wound healing of the keratin 14 promoted transforming growth factor-beta1 transgenic mouse. Wound Repair Regen 2002;10:177-187. https://doi.org/10.1046/j.1524-475X.2002.11101.x
- Amendt C, Mann A, Schirmacher P, Blessing M. Resistance of keratinocytes to TGFbeta-mediated growth restriction and apoptosis induction accelerates re-epithelialization in skin wounds. J Cell Sci 2002;115:2189- 2198.
- Cho W, Chen N, Tang C, Elias JA, Lee C. Arginase 2 plays an essential role in TGF-β-induced pulmonary fibrosis. Am J Respir Crit Care Med 2010;181:A2700.
- Kolb M, Bonniaud P, Galt T, et al. Differences in the fibrogenic response after transfer of active transforming growth factor-beta1 gene to lungs of "fibrosis-prone" and "fibrosis-resistant" mouse strains. Am J Respir Cell Mol Biol 2002;27:141-150. https://doi.org/10.1165/ajrcmb.27.2.4674
- Ward WF, Sharplin J, Franko AJ, Hinz JM. Radiationinduced pulmonary endothelial dysfunction and hydroxyproline accumulation in four strains of mice. Radiat Res 1989;120:113-120. https://doi.org/10.2307/3577638
- Brass DM, Hoyle GW, Poovey HG, Liu JY, Brody AR. Reduced tumor necrosis factor-alpha and transforming growth factor-beta1 expression in the lungs of inbred mice that fail to develop fibroproliferative lesions consequent to asbestos exposure. Am J Pathol 1999;154:853-862. https://doi.org/10.1016/S0002-9440(10)65332-1
- Deheuninck J, Luo K. Ski and SnoN, potent negative regulators of TGF-beta signaling. Cell Res 2009;19:47-57. https://doi.org/10.1038/cr.2008.324
- Moustakas A, Souchelnytskyi S, Heldin CH. Smad regulation in TGF-beta signal transduction. J Cell Sci 2001;114:4359-4369.
- Derynck R, Zhang YE. Smad-dependent and Smadindependent pathways in TGF-beta family signalling. Nature 2003;425:577-584. https://doi.org/10.1038/nature02006
- Ishii Y, Fujimoto S, Fukuda T. Gefitinib prevents bleomycin- induced lung fibrosis in mice. Am J Respir Crit Care Med 2006;174:550-556. https://doi.org/10.1164/rccm.200509-1534OC
- Laato M, Kahari VM, Niinikoski J, Vuorio E. Epidermal growth factor increases collagen production in granulation tissue by stimulation of fibroblast proliferation and not by activation of procollagen genes. Biochem J 1987;247:385-388. https://doi.org/10.1042/bj2470385
-
Samarakoon R, Dobberfuhl AD, Cooley C, et al. Induction of renal fibrotic genes by TGF-
$\beta$ 1 requires EGFR activation, p53 and reactive oxygen species. Cell Signal 2013;25:2198-2209. https://doi.org/10.1016/j.cellsig.2013.07.007 - Bussink AP, Speijer D, Aerts JM, Boot RG. Evolution of mammalian chitinase(-like) members of family 18 glycosyl hydrolases. Genetics 2007;177:959-970. https://doi.org/10.1534/genetics.107.075846
- Funkhouser JD, Aronson NN Jr. Chitinase family GH18: evolutionary insights from the genomic history of a diverse protein family. BMC Evol Biol 2007;7:96. https://doi.org/10.1186/1471-2148-7-96
- Chang NC, Hung SI, Hwa KY, et al. A macrophage protein, Ym1, transiently expressed during inflammation is a novel mammalian lectin. J Biol Chem 2001;276:17497-17506. https://doi.org/10.1074/jbc.M010417200
- Bleau G, Massicotte F, Merlen Y, Boisvert C. Mammalian chitinase-like proteins. EXS 1999;87:211-221.
- Di Rosa M, Musumeci M, Scuto A, Musumeci S, Malaguarnera L. Effect of interferon-gamma, interleukin- 10, lipopolysaccharide and tumor necrosis factoralpha on chitotriosidase synthesis in human macrophages. Clin Chem Lab Med 2005;43:499-502.
- Malaguarnera L, Musumeci M, Di Rosa M, Scuto A, Musumeci S. Interferon-gamma, tumor necrosis factoralpha, and lipopolysaccharide promote chitotriosidase gene expression in human macrophages. J Clin Lab Anal 2005;19:128-132. https://doi.org/10.1002/jcla.20063
- van Eijk M, van Roomen CP, Renkema GH, et al. Characterization of human phagocyte-derived chitotriosidase, a component of innate immunity. Int Immunol 2005;17:1505-1512. https://doi.org/10.1093/intimm/dxh328
- Gordon-Thomson C, Kumari A, Tomkins L, et al. Chitotriosidase and gene therapy for fungal infections. Cell Mol Life Sci 2009;66:1116-1125. https://doi.org/10.1007/s00018-009-8765-7
- Labadaridis I, Dimitriou E, Theodorakis M, Kafalidis G, Velegraki A, Michelakakis H. Chitotriosidase in neonates with fungal and bacterial infections. Arch Dis Child Fetal Neonatal Ed 2005;90:F531-F532. https://doi.org/10.1136/adc.2004.051284
- Brunner J, Scholl-Burgi S, Prelog M, Zimmerhackl LB. Chitotriosidase as a marker of disease activity in sarcoidosis. Rheumatol Int 2007;27:1185-1186. https://doi.org/10.1007/s00296-007-0318-5
- Boot RG, Hollak CE, Verhoek M, Alberts C, Jonkers RE, Aerts JM. Plasma chitotriosidase and CCL18 as surrogate markers for granulomatous macrophages in sarcoidosis. Clin Chim Acta 2010;411:31-36. https://doi.org/10.1016/j.cca.2009.09.034
- Bargagli E, Margollicci M, Luddi A, et al. Chitotriosidase activity in patients with interstitial lung diseases. Respir Med 2007;101:2176-2181. https://doi.org/10.1016/j.rmed.2007.05.008
- Bargagli E, Margollicci M, Nikiforakis N, et al. Chitotriosidase activity in the serum of patients with sarcoidosis and pulmonary tuberculosis. Respiration 2007;74:548-552. https://doi.org/10.1159/000100555
- Ihn H, Yamane K, Kubo M, Tamaki K. Blockade of endogenous transforming growth factor beta signaling prevents up-regulated collagen synthesis in scleroderma fibroblasts: association with increased expression of transforming growth factor beta receptors. Arthritis Rheum 2001;44:474-480. https://doi.org/10.1002/1529-0131(200102)44:2<474::AID-ANR67>3.0.CO;2-#
- Asano Y, Ihn H, Yamane K, Jinnin M, Mimura Y, Tamaki K. Involvement of alphavbeta5 integrin-mediated activation of latent transforming growth factor beta1 in autocrine transforming growth factor beta signaling in systemic sclerosis fibroblasts. Arthritis Rheum 2005;52:2897-2905. https://doi.org/10.1002/art.21246
- Bozyk PD, Moore BB. Prostaglandin E2 and the pathogenesis of pulmonary fibrosis. Am J Respir Cell Mol Biol 2011;45:445-452. https://doi.org/10.1165/rcmb.2011-0025RT
- Miyoshi K, Yanagi S, Kawahara K, et al. Epithelial Pten controls acute lung injury and fibrosis by regulating alveolar epithelial cell integrity. Am J Respir Crit Care Med 2013;187:262-275. https://doi.org/10.1164/rccm.201205-0851OC
- Kang HR, Cho SJ, Lee CG, Homer RJ, Elias JA. Transforming growth factor (TGF)-beta1 stimulates pulmonary fibrosis and inf lammation via a Bax-dependent, bid-activated pathway that involves matrix metalloproteinase-J Biol Chem 2007;282:7723-7732. https://doi.org/10.1074/jbc.M610764200
- Kang HR, Lee CG, Homer RJ, Elias JA. Semaphorin 7A plays a critical role in TGF-beta1-induced pulmonary fibrosis. J Exp Med 2007;204:1083-1093. https://doi.org/10.1084/jem.20061273
- Henderson NC, Arnold TD, Katamura Y, et al. Targeting of αv integrin identifies a core molecular pathway that regulates f ibrosis in several organs. Nat Med 2013;19:1617-1624. https://doi.org/10.1038/nm.3282
- Barry-Hamilton V, Spangler R, Marshall D, et al. Allosteric inhibition of lysyl oxidase-like-2 impedes the development of a pathologic microenvironment. Nat Med 2010;16:1009-1017. https://doi.org/10.1038/nm.2208
- Wang R, Ibarra-Sunga O, Verlinski L, Pick R, Uhal BD. Abrogation of bleomycin-induced epithelial apoptosis and lung fibrosis by captopril or by a caspase inhibitor. Am J Physiol Lung Cell Mol Physiol 2000;279:L143-L151. https://doi.org/10.1152/ajplung.2000.279.1.L143
- Toonkel RL, Hare JM, Matthay MA, Glassberg MK. Mesenchymal stem cells and idiopathic pulmonary fibrosis. Potential for clinical testing. Am J Respir Crit Care Med 2013;188:133-140. https://doi.org/10.1164/rccm.201207-1204PP
Cited by
- Promising new treatment targets in patients with fibrosing lung disorders vol.2, pp.11, 2014, https://doi.org/10.12998/wjcc.v2.i11.668
- Blocking the Wnt/β-Catenin Pathway by Lentivirus-Mediated Short Hairpin RNA Targeting β-Catenin Gene Suppresses Silica-Induced Lung Fibrosis in Mice vol.12, pp.9, 2015, https://doi.org/10.3390/ijerph120910739
- TGF-β1-Induced Pulmonary Fibroblasts Proliferation and Differentiation Are Inhibited by Antisense Oligodeoxynucleotide of Basic Fibroblast Growth Factor vol.80, pp.3, 2014, https://doi.org/10.1508/cytologia.80.331
- Protective effects of ulinastatin and methylprednisolone against radiation-induced lung injury in mice vol.57, pp.5, 2014, https://doi.org/10.1093/jrr/rrw036
- Prevention and Therapeutic Effects and Mechanisms of Tanshinone IIA Sodium Sulfonate on Acute Liver Injury Mice Model vol.2016, pp.None, 2014, https://doi.org/10.1155/2016/4097398
- Protective Effect of Ginsenoside Rg1 on Bleomycin-Induced Pulmonary Fibrosis in Rats: Involvement of Caveolin-1 and TGF-β1 Signal Pathway vol.39, pp.8, 2014, https://doi.org/10.1248/bpb.b16-00046
- Delivery of RNAi Therapeutics to the Airways—From Bench to Bedside vol.21, pp.10, 2016, https://doi.org/10.3390/molecules21091249
- Bacillus Calmette-Guerin alleviates airway inflammation and remodeling by preventing TGF-β1 induced epithelial–mesenchymal transition vol.13, pp.8, 2014, https://doi.org/10.1080/21645515.2017.1313366
- The Processes and Mechanisms of Cardiac and Pulmonary Fibrosis vol.8, pp.None, 2014, https://doi.org/10.3389/fphys.2017.00777
- Bach1 siRNA attenuates bleomycin-induced pulmonary fibrosis by modulating oxidative stress in mice vol.39, pp.1, 2014, https://doi.org/10.3892/ijmm.2016.2823
- Microencapsulation of Lefty-secreting engineered cells for pulmonary fibrosis therapy in mice vol.312, pp.5, 2014, https://doi.org/10.1152/ajplung.00295.2016
- Pirfenidone attenuates bleomycin-induced pulmonary fibrosis in mice by regulating Nrf2/Bach1 equilibrium vol.17, pp.None, 2014, https://doi.org/10.1186/s12890-017-0405-7
- Chimaphilin inhibits human osteosarcoma cell invasion and metastasis through suppressing the TGF-β1-induced epithelial-to-mesenchymal transition markers via PI-3K/Akt, ERK1/2, and Smad signaling vol.96, pp.1, 2014, https://doi.org/10.1139/cjpp-2016-0522
- Autophagy and the unfolded protein response promote profibrotic effects of TGF-β1 in human lung fibroblasts vol.314, pp.3, 2014, https://doi.org/10.1152/ajplung.00372.2017
- Dexamethasone reduces serum level of IL-17 in Bleomycin-A5-induced rats model of pulmonary fibrosis vol.46, pp.4, 2014, https://doi.org/10.1080/21691401.2017.1339051
- Upregulated miR-29c suppresses silica-induced lung fibrosis through the Wnt/β-catenin pathway in mice vol.37, pp.9, 2014, https://doi.org/10.1177/0960327117741750
- Biomarkers of skin and lung fibrosis in systemic sclerosis vol.15, pp.11, 2014, https://doi.org/10.1080/1744666x.2020.1670062
- Cellular senescence and EMT crosstalk in bleomycin‐induced pathogenesis of pulmonary fibrosis-an in vitro analysis vol.44, pp.2, 2014, https://doi.org/10.1002/cbin.11248
- Amelioration of bleomycin-induced pulmonary fibrosis via TGF-β-induced Smad and non-Smad signaling pathways in galectin-9-deficient mice and fibroblast cells vol.27, pp.1, 2014, https://doi.org/10.1186/s12929-020-0616-8
- Protective and anti-inflammatory effect of selenium nano-particles against bleomycin-induced pulmonary injury in male rats vol.44, pp.1, 2014, https://doi.org/10.1080/01480545.2018.1560466
- Targeted inhibition of β-catenin alleviates airway inflammation and remodeling in asthma via modulating the profibrotic and anti-inflammatory actions of transforming growth factor-β vol.15, pp.None, 2021, https://doi.org/10.1177/1753466620981858
- New Insights into Pathomechanisms and Treatment Possibilities for Lung Silicosis vol.22, pp.8, 2014, https://doi.org/10.3390/ijms22084162
- In vivo silencing of amphiregulin by a novel effective Self-Assembled-Micelle inhibitory RNA ameliorates renal fibrosis via inhibition of EGFR signals vol.11, pp.1, 2014, https://doi.org/10.1038/s41598-021-81726-2