DOI QR코드

DOI QR Code

벤토나이트에 의한 혼합 중금속($Zn^{2+}$, $Ni^{2+}$, $Cd^{2+}$, $Cu^{2+}$$Pb^{2+}$) 수용액상에서의 중금속 흡착 특성

Adsorption characteristics of synthetic heavy metals ($Zn^{2+}$, $Ni^{2+}$, $Cd^{2+}$, $Cu^{2+}$, and $Pb^{2+}$) by bentonite

  • 신우석 (한경대학교 해양과학기술연구센터) ;
  • 김영기 (한경대학교 화학공학과)
  • Shin, Woo-Seok (Institute of Marine Science and Technology Research, Hankyong National University) ;
  • Kim, Young-Kee (Department of Chemical Engineering, Hankyong National University)
  • 투고 : 2014.04.02
  • 심사 : 2014.06.13
  • 발행 : 2014.06.30

초록

본 연구에서는 벤토나이트를 이용하여 수용액상에서 혼합 중금속의 흡착 특성을 평가하였다. 벤토나이트는 SEM과 FT-IR에 의해 물리 화학적 성상을 분석하였고, 중금속 흡착 특성은 Freundlich 및 Langmuir 방정식을 이용하여 해석하였다. 평형흡착 실험결과는 Langmuir 모델에 잘 부합되었으며, $Pb^{2+}$ > $Cu^{2+}$ > $Cd^{2+}$ > $$Zn^{2+}{\sim_=}Ni^{2+}$$순으로 평형 흡착량이 높았다. 용액의 pH가 6에서 10으로 증가함에 따라 흡착량은 증가하는 경향을 나타내었다. SEM과 FT-IR에 의한 벤토나이트의 표면 관찰결과에서 주 관능기는 Si-O 및 Si-O-Al 로 나타났다. 이러한 결과로부터 중금속 흡착 메카니즘은 표면흡착과 이온교환뿐만 아니라 표면 침전이다. 본 연구 결과를 통해 벤토나이트는 수용액 내 중금속을 효율적으로 제거할 수 있는 흡착제로 판단된다.

In this study, the adsorption efficiency of mixed heavy metals from an aqueous solution was examined using bentonite. The physical and chemical properties of bentonite was analyzed via scanning electron microscopy (SEM) and Fourier transform infrared spectroscopy (FT-IR), Further, heavy metal adsorption was characterized using Freundlich and Langmuir equations. Equilibrium adsorption data were fitted well to the Langmuir model for bentonite. The adsorption uptake of heavy metals was high and followed the order $Pb^{2+}$ > $Cu^{2+}$ > $Cd^{2+}$ > $$Zn^{2+}{\sim_=}Ni^{2+}$$. The results also showed that adsorption uptake slightly increased as increasing pH from 6 to 10. The bentonite surface was observed viay SEM and FT-IR; Si-O and Si-O-Al were found to be the main functional groups by FT-IR analysis. From these results, the adsorption mechanisms of heavy metal were not only surface adsorption and ion exchange, but also surface precipitation. Thus, bentonite could be a useful adsorbent for treating heavy metal in aqueous solution.

키워드

과제정보

연구 과제 주관 기관 : 한국해양과학기술진흥원

참고문헌

  1. United States Environmental Protection Agency (USEPA), Contaminated sediment remediation guidance for hazardous waste sites, EPA's nation al service center for environmental publications, (2005). http://www.epa.gov/superfund/resources/sediment/guidance.htm.
  2. Horsfall, M. J. and Abia, A. A., "Sorption of cadmium(II) and Zinc(II) ions from aqueous solutions by cassava waste biomass (Manihot sculenta Cranz)". Water Research, 37(20), pp. 4913-4923. (2003) https://doi.org/10.1016/j.watres.2003.08.020
  3. Grim, R. E., Clay mineralogy, Mcgraw-Hill Book Company, pp. 79-195. (1976).
  4. Jaynes, W. F. and Boyd, S. A., "Clay mineral type and organic compound sorption by hexadecyltrimethylammonium-exchanged clays". Soil Science Society of America Journal, 55(1), pp. 43-48. (1991). https://doi.org/10.2136/sssaj1991.03615995005500010007x
  5. Goh, E. O., Lee, J. O., Cho, W. J., Hyun, J. H., Kang, C. H. and Chun, K. S., "Adsorption characteristics of copper ion onto a bentonite". Journal of Korean Society Environmental Engineers, 22(1), pp. 83-89. (2000).
  6. Kang, H., Park, S. M., Jang, Y. D. and Kim, J. J., "Studies on adsorption of heavy metals with zeolite and bentonite". Journal of the Mineralogical Society of Korea, 21(1), pp. 45-56. (2008).
  7. Shin, W. S. and Kim, Y. G., "Removal characteristics of mixed heavy metals from aqueous solution by recycled aggregate as construction waste". Journal of the Korean Society for Marine Environment and Energy, 16(2), pp. 115-120. (2013) https://doi.org/10.7846/JKOSMEE.2013.16.2.115
  8. Ho, Y. S. and McKay, G., "Thesorption of lead(II) ions on peat", Water Research, 33(2), pp. 578-584. (1999a). https://doi.org/10.1016/S0043-1354(98)00207-3
  9. Ho, Y. S. and McKay, G., "Pseudo-second order model for sorption processes". Process Biochemistry, 34(5), pp. 451-465. (1999b). https://doi.org/10.1016/S0032-9592(98)00112-5
  10. Weber, J. and Miller, C. T., Organic chemical movement over and through soil, In: sawhney, B.L., Broen, K. (ed) Reactions and movement of organic chemical, Soil Sciences, American Madison, pp. 305-334. (1989).
  11. Na, C. K., Han, M. Y. and Park, H. J., "Applicability of theoretical adsorption models for studies on adsorption properties of adsorbents(I)". Journal of Korean Society of Environmental Engineering, 33(8), pp. 606-616. (2011). https://doi.org/10.4491/KSEE.2011.33.8.606
  12. Choi, I. W., Kim, S. U., Seo, D. C., Kang, B. H., Sohn, B. K., Rim, Y. S., Heo, J. S. and Cho, J. S., "Biosoroption of heavy metals by biomass of seaweeds, Laminaria species, Ecklonia stolonifera, Gelidium amansii and Undaria pinnatifida". Korean Journal of Environmental Agriculture, 24(4), pp. 370-378. (2005). https://doi.org/10.5338/KJEA.2005.24.4.370
  13. Weng, C. H. and Huang, C. P., "Treatment of metal industrial waste water by fly ash and cement fixation". Journal of Environmental Engineering, 120(6), pp. 1470-1487. (1994) https://doi.org/10.1061/(ASCE)0733-9372(1994)120:6(1470)
  14. Allahverdi, A. and Kani, E. N., "Construction wastes as raw materials for Geopolymer binders". International Journal of Civil Engineering, 7(3), pp. 154-160. (2009).
  15. Zhirong, L., Uddin, M. A., Zhanxue, S., "FT-IR and XRD analysis of natural Na-bentonite and Cu(II)-loaded Na-bentonite". Spectrochimica Acta Part A: Mocecular and Biomolecular Spectroscopy, 79(5), pp. 1013-1016. (2011). https://doi.org/10.1016/j.saa.2011.04.013
  16. Wang, S., Dong, Y., He, M., Chen, L. and Yu, X., "Characterization of GMZ bentonite and its application in the adsorption of Pb(II) from aqueous solutions". Applied Clay Science, 43(2), pp. 164-171, (2009). https://doi.org/10.1016/j.clay.2008.07.028
  17. Tobin, J. M., Copper, D. G. and Neufeld, R. J., "Uptake of metal ions by Rhizopus arrhizus biomass". Applied Environmental Microbiology, 47(4), pp. 821-824. (1984).
  18. McBride, M. B., Environmental Chemistry in Soils, Oxford University press, Oxford, (1994).
  19. Lide, D. R., Handbook of chemistry and physics, CRC press, Boca Raton, (1998).
  20. Hillel, D., Environmental soil physics, Academic press, San Diego, CA, (1998).
  21. Danny, C. W., Chun, K., Cheung, W., Keith, K. H., John, F. and McKay, G., "Sorption equilibria of metal ions on bone char". Chemosphere, 54(3), pp. 273-281. (2004). https://doi.org/10.1016/j.chemosphere.2003.08.004
  22. Hui, K. S., Chao, C. Y. H., Kot, S. C., "Removal of mixed heavy metal ions in wastewater by zeolite 4A and residual products from recycled coal fly ash". Jouranl of Hazardous Material, 127, pp. 89-101. (2005). https://doi.org/10.1016/j.jhazmat.2005.06.027
  23. Gilbert, M. M., Introduction to environmental engineering and science, 2rd ed., Prentice Hall, (1996).
  24. Quy, T. N. and Bruce, A. M., "Lead adsorption and precipitation reactions on soil minerals". Symposia papers presented before the division of Environmental Chemistry American Chemical Society, 41, pp. 609-613. (2001).
  25. Chen, G. Z. and Fray, D. J., "Cathodic refining in molten salts: Removal of oxygen, sulfur and selenium from static and flowing molten copper". Journal of Applied Electrochemistry, 31, pp. 155-164. (2001). https://doi.org/10.1023/A:1004175605236
  26. Srivastava, P., Singh, B. and Angove, M., "Competitiveadsorption behavior of heavy metals on kaolinite". Journal of Colloid and Interface Science, 290(1), pp. 28-38. (2005). https://doi.org/10.1016/j.jcis.2005.04.036
  27. Smiljanic, S., smiciklas, I., Peric-Grujic, A., Loncar, B. and Mitric, M., "Rinsed and thermally treated red mud sorbents for aqueous $Ni^{2+}$ ions". Chemical Engineering Journal, 162(1), pp. 75-83. (2010). https://doi.org/10.1016/j.cej.2010.04.062
  28. Hatje, V., Payne, T. E., Hill, D. M., McOrist, G., Birch, G. F. and Sztmczak, R., "Kinetics of trace element uptake and release by particles in estuarine waters: effects of pH, salinity, and particle loading". Environment International, 29(5), pp. 619-629. (2003). https://doi.org/10.1016/S0160-4120(03)00049-7
  29. Misak, N. Z., Ghoneimy, H. F. and Morcos, T. N., "Adsorption of $Co^{2+}$ and $Zn^{2+}$ ions on hydrous Fe(III), Sn(IV), and Fe(III)/Sn(IV) oxides", Journal of Colloid and Interface Science, 184(1), pp. 31-43. (1996).