DOI QR코드

DOI QR Code

Lyapunov 재설계 방법을 이용한 무인 수상정의 군집 제어

Formation Control for Unmanned Surface Vessels Using Lyapunov Redesign Method

  • Woo, Sangbum (Samsung Electronics) ;
  • Lee, Jaeyong (Department of Naval Architecture and Ocean Engineering, Dong-Eui University)
  • 투고 : 2013.12.17
  • 심사 : 2014.08.19
  • 발행 : 2014.08.30

초록

In this paper, a practical controller for a group of USVs is proposed in order to avoid matrix inversion problems in computation. Using nonlinear mapping, a formation composed of nonholonomic agents can be stabilized even when the formation is stationary. Since there is no matrix inversion in computing the control law, the computation complexity can be resolved. A controller for stabilizing the formation errors in the presence of model uncertainty is considered using the Lyapunov redesign method. The asymptotic stability of the formation errors is shown. It is also shown that the proposed controller can be applied to guide a formation to a different shape without modification.

키워드

참고문헌

  1. Arrichiello, F., Chiaverini, S., Fossen, T.I., 2006. Formation Control of Underactuated Surface Vessels using the Null-Space-Based Behavioral Control, Proceeding of IEEE Int. Conf. on Intelligent Robots and Systems.
  2. Astolfi, A., 1999. Exponential Stabilization of a Wheeled Mobile Robot via Discontinuous Control. Journal of Dynamic Systems, Measurement, and Control, 121, 121-126. https://doi.org/10.1115/1.2802429
  3. Badreddin, E., Mansour, M., 1993. Fuzzy-tuned State Feedback Control of a Nonholonomic Mobile Robot. IFAC World Congress, Sydney Australia, 6, 577-580.
  4. Balch, T., Arkin, R.C., 1998. Behavior-Based Formation Control for Multirobot Teams. IEEE Transactions on Robotics and Automation, 14(6), 926-939. https://doi.org/10.1109/70.736776
  5. Breivik, M., Hovstein, V.E., Fossen, T.I., 2008. Ship Formation Control: A Guided Leader-Follower Approach. Proceeding of IFAC World Congress, 16008-16014.
  6. Brockett, R.W., 1983. Asymptotic Stability and Feedback Stabilization. in Differential Geometric Control Theory. Birkhauser, Boston, Massachusetts, 181-191.
  7. Das, A.K., Fierro, R., Kumar, V., Ostrowski, J.P., Spletzer, J., Taylor, C.J., 2002. A Vision-Based Formation Control Framework. IEEE Transactions on Robotics and Automation. 18(5), 813-825. https://doi.org/10.1109/TRA.2002.803463
  8. Desai, J.P., Ostrowski, J.P., Kumar, V., 2001. Modeling and Control of Formations of Nonholonomic Mobile Robots. 17(6), 905-908. https://doi.org/10.1109/70.976023
  9. de Wit, C.C., Sørdalen, O.J., 1992. Exponential Stabilization of Mobile Robots with Nonholonomic Constraints. IEEE Transactions on Automatic Control, 37(11), 1791-1797. https://doi.org/10.1109/9.173153
  10. Egerstedt, M. and Hu, X., 2001. Formation Constrained Multi-Agent Control. IEEE Transactions on Robotics and Automation, 17(6), 947-951. https://doi.org/10.1109/70.976029
  11. Khalil, H.K., 2002. Nonlinear Systems. 3rd Edition, Prentice Hall, Upper Saddle River, New Jersey.
  12. Lewis, M.A., Tan, K.H., 1997. High Precision formation Control of Mobile Robots Using Virtual Structures. Autonomous Robots, 4(4), 387-403. https://doi.org/10.1023/A:1008814708459
  13. Lim, J.H., Kang, C.U., Kim, S.K., 2005. A Study on a 3-D Localization of a AUV Based on a Mother Ship. Journalof Ocean Engineering and Technology, 19(2), 74-81.
  14. Makrinos, S.T., 2004. United States Port Security in the War on Terrorism. Sea Technology, 45(3), 33-34.
  15. US NAVY, 2007. The Navy Unmanned Surface Vehicle (USV) Master Plan. [Online] Available at: [Accessed 31 Dec. 2013].
  16. Sadowska, A., Broek, T.v.d., Huijberts, H., Wouw, N.v.d., Kostic, D., Nijmeijer, H., 2011. A virtual structure approach to formation control of unicyle mobile robots using mutual coupling. International Journal of Control, 84(11), 1886-1902. https://doi.org/10.1080/00207179.2011.627686
  17. Xiang, X. Lapierre, L., Bruno, J., Parodi, O., 2010. Coordinated Formation Control of Multiple Autonomous Underwater Vehicles for Pipeline Inspection. International Journal of Advanced Robotic Systems. 7(1), 75-84.