DOI QR코드

DOI QR Code

Predictive Modeling of Bacillus cereus on Carrot Treated with Slightly Acidic Electrolyzed Water and Ultrasonication at Various Storage Temperatures

미산성 차아염소산수와 초음파를 처리한 당근에서 저장 중 Bacillus cereus 균의 생육 예측모델

  • Kim, Seon-Young (Department of Food Science and Biotechnology, School of Bio-convergence Science and Technology, Kangwon National University) ;
  • Oh, Deog-Hwan (Department of Food Science and Biotechnology, School of Bio-convergence Science and Technology, Kangwon National University)
  • 김선영 (강원대학교 식품생명공학과) ;
  • 오덕환 (강원대학교 식품생명공학과)
  • Received : 2014.04.03
  • Accepted : 2014.05.21
  • Published : 2014.08.31

Abstract

This study was conducted to develop predictive models for the growth of Bacillus cereus on carrot treated with slightly acidic electrolyzed water (SAcEW) and ultrasonication (US) at different storage temperatures. In addition, the inactivation of B. cereus by US with SAcEW was investigated. US treatment with a frequency of 40 kHz and an acoustic energy density of 400 W/L at $40^{\circ}C$ for 3 min showed the maximum reduction of 2.87 log CFU/g B. cereus on carrot, while combined treatment of US (400 W/L, $40^{\circ}C$, 3 min) with SAcEW reached to 3.1 log CFU/g reduction. Growth data of B. cereus on carrot treated with SAcEW and US at different temperatures (4, 10, 15, 20, 25, 30, and $35^{\circ}C$) were collected and used to develop predictive models. The modified Gompertz model was found to be more suitable to describe the growth data. The specific growth rate (SGR) and lag time (LT) obtained from the modified Gompertz model were employed to establish the secondary models. The newly developed secondary models were validated using the root mean square error, bias factor, and accuracy factor. All results of these factors were in the acceptable range of values. After compared SGR and LT of B. cereus on carrot, the results showed that the growth of B. cereus on carrot treated with SAcEW and US was slower than that of single treatment. This result indicates that shelf life of carrot treated with SAcEW and US could be extended. The developed predictive models might also be used to assess the microbiological risk of B. cereus infection in carrot treated with SAcEW and US.

최근 과채류나 즉석섭취식품과 같은 비가열처리식품 중 당근에 존재하는 B. cereus 균은 토양세균의 일종으로 내열성 포자를 생성하여 다른 식중독 균보다 어느 표면이든 잘 들러붙어 세척과 소독이 어려운 것으로 알려지고 있다. 따라서 식품위생 및 품질에 민감히 대처하기 위해 비가열 세척 처리기술과 미생물의 생육을 수학적으로 기술하여 예측함으로써 위해 미생물을 효과적으로 제어하는 예측 미생물학을 개발해야 한다. 이를 위해 비가열 세척 처리 방법 중 초음파와 미산성 차아염소산수를 이용하여 병용 처리한 후 최적조건으로 병용 처리한 당근을 시간과 온도에 따른 생육 변화를 통해 예측모델을 개발하였다. 미산성 차아염소산수와 초음파를 병용 처리하여 B. cereus 균 저감화 효과를 분석한 결과, 초음파 단독 처리 시 400 W/L, $40^{\circ}C$, 3분 조건에서 2.87 log CFU/g의 살균 효과를 나타내 가장 좋은 최적조건을 나타내었다. 이를 바탕으로 B. cereus 균을 접종한 당근에 미산성 차아염소산수와 병용 처리를 하였을 때 3.1 log CFU/g의 저감화를 나타내었다. 최적조건으로 병용 처리한 당근을 각각 다른 온도(5, 10, 15, 20, 25, 30, $34^{\circ}C$)에서 저장 중의 B. cereus 균 생육 변화와 예측모델을 개발한 결과, modified Gompertz model은 B. cereus 균 생육 변화를 예측하는 데 매우 적합($R^2$은 0.9918~0.9992)한 것으로 나타났으며 온도가 높을수록 SGR값은 증가하였고 LT값은 감소하였다. 이를 바탕으로 2차 모델을 개발하여 적합성을 분석한 결과 예측값과 측정값이 모두 정확하게 일치하게 되면 1에 가까운 값을 나타내는 Bias factor($B_f$)와 Accuracy factor($A_f$)가 SGR은 1.00, 1.03, LT는 1.02, 1.05로 각각 나타나 매우 높은 상관관계를 나타내었다. 본 연구 결과의 의미는 초음파와 미산성 차아염소산수를 이용하여 당근에서 B. cereus의 저감화 기술 및 저장 중 생육 변화를 실시간으로 정량적으로 예측하는 예측모델을 개발하여 식품의 가공 및 저장 중의 품질 변화 원인을 규명하고 품질 저하를 위생적으로 안전한 저장 및 유통 기술을 확립하고자 하였다.

Keywords

References

  1. Beuchat LR. 1996. Pathogenic microorganisms associated with fresh produce. J Food Prot 59: 204-216.
  2. Burnett SL, Beuchat LR. 2001. Human pathogens associated with raw produce and unpasteurized juices, and difficulties in decontamination. J Microbiol Biotechnol 27: 104-110. https://doi.org/10.1038/sj.jim.7000199
  3. Vernam AH, Evans MG. 1991. Bacillus. In Foodborne Pathogens: An Illustrated Text. Wolfe Publishing Ltd., London, UK. p 267-288.
  4. Bea YM, Hong YJ, Kang DH, Heu SG, Lee SY. 2001. Microbial and pathogenic contamination of ready-to-eat fresh vegetables in Korea. Korean J Food Sci Technol 43: 161-168. https://doi.org/10.9721/KJFST.2011.43.2.161
  5. Kang JH, Park JY, Oh DH, Song KB. 2012. Effects of combined treatment of aqueous chlorine dioxide and UV-C or electron beam irradiation on microbial growth and quality in chicon during storage. J Korean Soc Food Sci Nutr 41: 1632-1638. https://doi.org/10.3746/jkfn.2012.41.11.1632
  6. Koide S, Takeda J, Shi J, Shono H, Atungulu GG. 2009. Disinfection efficacy of slightly acidic electrolyzed water on fresh cut cabbage. Food Control 20: 294-297. https://doi.org/10.1016/j.foodcont.2008.05.019
  7. Kim C, Hung YC, Brackett RE. 2000. Efficacy of electrolyzed oxidizing (EO) and chemically modified water on different types of foodborne pathogens. Int J Food Microbiol 61: 199-207. https://doi.org/10.1016/S0168-1605(00)00405-0
  8. Kim DH, Kim SM, Kim HB, Moon KD. 2012. Effects of optimized co-treatment conditions with ultrasound and low-temperature blanching using the response surface methodology on the browning and quality of fresh-cut lettuce. Korean J Food Preserv 19: 470-476. https://doi.org/10.11002/kjfp.2012.19.4.470
  9. Ajlouni S, Sibrani H, Premier R, Tomkins B. 2006. Ultrasonication and fresh produce (cos lettuce) preservation. J Food Sci 71: M62-M68. https://doi.org/10.1111/j.1365-2621.2006.tb08909.x
  10. Zhou B, Feng H, Luo Y. 2009. Ultrasound enhanced sanitizer efficacy in reduction of Escherchia coli O157:H7 population on spinach leaves. J Food Sci 74: 308-313. https://doi.org/10.1111/j.1750-3841.2009.01247.x
  11. Ugarte-Romero E, Feng H, Martin SE. 2007. Inactivation of Shigella boydii 18 IDPH and Listeria monocytogenes Scott A with power ultrasound at different acoustic energy densities and temperatures. J Food Sci 72: 103-107.
  12. Jin Y, Kim TW, Ding T, Oh DH. 2009. Effect of electrolyzed water and citric acid on quality enhancement and microbial inhibition in head lettuce. Korean J Food Sci Technol 41: 578-586.
  13. Forghani F, Rahman SME, Park MS, Park JH, Park JY, Song KB, Oh DH. 2013. Ultrasonication enhanced low concentration electrolyzed water efficacy on bacteria inactivation and shelf life extension on lettuce. Food Sci Biotechnol 22: 131-136. https://doi.org/10.1007/s10068-013-0018-8
  14. Huang TS, Xu C, Walker K, West P, Zhang S, Weese J. 2006. Decontamination efficacy of combined chlorine dioxide with ultrasonication on apples and lettuce. J Food Sci 71: 134-139. https://doi.org/10.1111/j.1750-3841.2006.00015.x
  15. Rahman SME, Ding T, Oh DH. 2010. Inactivation effect of newly developed low concentration electrolyzed water and other sanitizers against microorganisms on spinach. Food Control 21: 1383-1387. https://doi.org/10.1016/j.foodcont.2010.03.011
  16. Garcia ML, Burgos J, Sanz B, Ordonez JA. 1989. Effect of heat and ultrasonic waves on the survival of two strains of Bacillus subtilis. J Appl Bacteriol 67: 619-628.
  17. Ding T, Rahman SME, Purev U, Oh DH. 2010. Modelling of Escherichia coli O157:H7 growth at various storage temperatures on beef treated with electrolyzed oxidizing water. J Food Eng 97: 497-503. https://doi.org/10.1016/j.jfoodeng.2009.11.007
  18. Koseki S, Isobe S. 2005. Prediction of pathogen growth on ice berg lettuce under real temperature history during distribution from farm to table. Int J Food Microbiol 104: 239-248. https://doi.org/10.1016/j.ijfoodmicro.2005.02.012
  19. Koseki S, Itoh K. 2001. Prediction of microbial growth in fresh-cut vegetables treated with acidic electrolyzed water during storage under various temperature conditions. J Food Prot 64: 1935-1942.
  20. Cao S, Hu Z, Pang B, Wang H, Xhi H, Wu F. 2010. Effect of ultrasound on fruit decay and quality maintenance in strawberry after harvest. Food Control 21: 529-532. https://doi.org/10.1016/j.foodcont.2009.08.002
  21. Kim DH, Kim SM, Kim HB, Moon KD. 2012. Effects of optimized co-treatment conditions with ultrasound and lowtemperature blanching using the response surface methodology on the browning and quality of fresh-cut lettuce. Korean J Food Preserv 19: 470-476. https://doi.org/10.11002/kjfp.2012.19.4.470
  22. Kim GH, Park BG, Kim HN, Park JH, Park MS, Park JY, Song KB, Oh DH. 2012. Effect of microbial inhibition and change of chromaticity on the raw materials of Saengsik treated with slightly acidic electrolyzed water during storage. J Korean Soc Food Sci Nutr 41: 1830-1841. https://doi.org/10.3746/jkfn.2012.41.12.1830
  23. Wang J, Rahman SME, Park MS, Park JH, Oh DH. 2012. Modeling the response of Listeria monocytogenes at various storage temperatures in pork with/without electrolyzed water treatment. Food Sci Biotechnol 21: 1549-1555. https://doi.org/10.1007/s10068-012-0206-y
  24. Sheen S, Hwang CA, Juneja VK. 2011. Modeling the impact of chlorine on the behavior of Listeria monocytogenes on ready-to-eat meats. Food Microbiol 28: 1095-1100. https://doi.org/10.1016/j.fm.2011.01.001
  25. te Giffel MC, Zwietering MH. 1999. Validation of predictive models describing the growth of Listeria monocytogenes. Int J Food Microbiol 46: 135-149. https://doi.org/10.1016/S0168-1605(98)00189-5
  26. Guiomar D, Fernando PR, Francisco LG, Ana A, María IG, Gonzalo Z. 2014. Modeling growth of Escherichia coli O157:H7 in fresh-cut lettuce treated with neutral electrolyzed water and under modified atmosphere packaging. Int J Food Microbiol 177: 1-8. https://doi.org/10.1016/j.ijfoodmicro.2013.12.025
  27. Ross T. 1996. Indices for performance evaluation of predictive models in food microbiology. J Appl Bacteriol 81: 501-508.
  28. Mansur AR, Wang J, Park MS, Oh DH. 2014. Growth model of Escherichia coli O157:H7 at various storage temperatures on kale treated by thermosonication combined with slightly acidic electrolyzed water. J Food Prot 77: 23-31. https://doi.org/10.4315/0362-028X.JFP-13-283

Cited by

  1. 저장온도에 따른 마른김(Pyropia pseudolinearis)의 Bacillus cereus 성장예측모델 개발 vol.53, pp.5, 2020, https://doi.org/10.5657/kfas.2020.0699
  2. Control Measures of Pathogenic Microorganisms and Shelf-Life Extension of Fresh-Cut Vegetables vol.10, pp.3, 2021, https://doi.org/10.3390/foods10030655
  3. Combination of ultrasonic waves and dielectric barrier discharge plasma for the viable reduction in human norovirus while retaining the quality of raw sea squirt vol.44, pp.11, 2021, https://doi.org/10.1111/jfpe.13847