Abstract
As most the scanning systems developed until now provide radiation scan plane images of the inspected objects, there has been a limitation in judging exactly the shape of the objects inside a logistics container exactly with only 2-D radiation image information. As a radiation image is just the density information of the scanned object, the direct application of general stereo image processing techniques is inefficient. So we propose that a new volume-based 3-D reconstruction algorithm. Experimental results show the proposed new volume based reconstruction technique can provide more efficient visualization for X-ray inspection. For validation of the proposed shape reconstruction algorithm using volume, 15 samples were scanned and reconstructed to restore the shape using an X-ray stereo inspection system. Reconstruction results of the objects show a high degree of accuracy compared to the width (2.56%), height (6.15%) and depth (7.12%) of the measured value for a real object respectively. In addition, using a K-Mean clustering algorithm a detection efficiency of 97% is achieved. The results of the reconstructed shape information using the volume based shape reconstruction algorithm provide the depth information of the inspected object with stereo X-ray inspection. Depth information used as an identifier for an automated search is possible and additional studies will proceed to retrieve an X-ray inspection system that can greatly improve the efficiency of an inspection.
X-선 탐지장치는 검색 대상물에 대한 단면 정보만을 제공하기 때문에 내용물에 대한 판정의 한계가 있다. 스테레오 X-선 탐지 장치는 검색 대상체에 대한 단면 정보와 논문에서 제안된 볼륨기반의 3차원 형상복원 알고리즘을 통해 3차원 정보를 제공하여 검색효율을 높일 수 있다. 또한, 고속 검색을 위해 자동화 검색에 대한 식별자로 형상복원 결과를 적용하고자 유사한 모형의 15개 샘플에 대한 형상 복원 및 검출율을 분석하였다. 검색대상 모델에 대한 복원 결과는 실측 모델과 비교할 때 각각 폭 (2.56%), 높이 (6.15 %)와 깊이 (7.12 %)의 오차를 보이며 높은 정확도를 나타내었다. 또한 K-Mean 클러스터링 알고리즘을 적용하여 실험한 결과 97 %의 검출 효율이 보였다. 본 논문의 결과는 자동화 시스템을 위한 새로운 검색식별자를 제시하며 추가연구를 통해 검색 시스템의 효율성 향상을 위한 연구를 진행할 것이다.