DOI QR코드

DOI QR Code

Scour Monitoring for Offshore Foundation using Electrical Resistivity and Shear Wave Tomography

전기비저항과 전단파 토모그래피를 이용한 해상 기초구조물의 세굴도 평가

  • Park, Kiwon (School of Civil, Environmental and Architectural Engineering, Korea University) ;
  • Lee, Jongsub (School of Civil, Environmental and Architectural Engineering, Korea University) ;
  • Choi, Changho (Korea Institute of Construction Technology) ;
  • Byun, Yonghoon (School of Civil, Environmental and Architectural Engineering, Korea University)
  • Received : 2014.06.12
  • Accepted : 2014.08.07
  • Published : 2014.09.01

Abstract

An embedded length of monopile caused by a scouring should be evaluated to monitor the stability of offshore foundations, because offshore foundations are affected by horizontal load. The objective of this study is to evaluate the scouring around offshore foundation by using electrical resistivity and to estimate ground stiffness by using shear wave tomography. The electrical resistivity profiles and shear wave tomography were measured according to the scour depth of model ground prepared with sand and cement. Several electrodes and bender elements were used to measure the electrical resistivity and shear waves, respectively. The electrode sets are attached on the monopile surface and bender elements are arranged in $7{\times}7$ arrays by using nylone frames. The electrical resistivity profiles and shear wave tomography are acquired by laboratory experiment. Maximum scour depth was estimated by electrical resistivity profiles and the ground stiffness of model ground was estimated by shear wave tomography. This study suggests that the electrical resistivity profiles and shear wave tomography may be useful for monitoring the stability of the offshore foundations.

해상 기초구조물은 수평하중에 지배적인 영향을 받으며, 세굴 발생으로 인한 모노파일의 근입깊이 및 지반강성의 감소는 구조물의 안정성을 저하시키게 된다. 본 연구의 목적은 전기비저항 모니터링 기법을 이용하여 기초구조물의 연직 세굴심도를 평가하고, 전단파 토모그래피를 통해 지반강성의 공간적 분포 및 변화양상을 파악하는 것이다. 해상 기초구조물에서의 세굴현상을 모사하기 위하여 하단이 고정된 모형 모노파일을 중앙에 위치시킨 후 모래 및 시멘트를 이용하여 모형 지반을 조성하였다. 전기비저항을 측정하기 위하여 모형 모노파일에 수평 및 수직배열로 구분하여 전극쌍을 설치하였으며, 전단파 측정을 위해서 사각형 프레임에 벤더 엘리먼트를 $7{\times}7$로 배열하였다. 세굴도 변화에 따라 위치별 전기비저항과 전단파 토모그래피 이미지를 측정하였다. 실내실험을 통해 세굴도 변화에 따른 위치별 전기비저항 변화와 전단파 토모그래피를 관찰하였고, 각 단계별 지반 변화양상을 파악하였다. 위치별 전기비저항의 변화를 통해 최대세굴심도 평가가 가능했으며, 전단파 토모그래피를 통해 세굴로 인한 지반의 전단강성 변화를 추정할 수 있었다. 본 논문에서 제시한 전기비저항과 전단파 토모그래피는 세굴현상으로 인한 해상 기초구조물 주변의 지반특성을 모니터링하기 위한 매우 효과적인 방법이 될 수 있음을 보여준다.

Keywords

References

  1. Ballio, F. and Radice, A. (2003), A non-touchsensor for local scour measurements, Journal of Hydraulic Research, Vol. 41, No. 1, pp. 105-108. https://doi.org/10.1080/00221680309499934
  2. Choi, J. S., Yeo, W. K. and Kim, M. M. (2003), Determination of bridge scour depth considering flow conditions and bed characteristics, Journal of Korea Water Resources Association, Vol. 36, No. 6, pp. 893-899 (in Korean). https://doi.org/10.3741/JKWRA.2003.36.6.893
  3. Kim, J. H., Yoon, H. K. and Lee, J. S. (2011), Void ratio estimation of soft soils using electrical resistivity cone probe, Journal of Geotechnical and Geoenvironmental Engineering, Vol. 137, No. 1, pp. 86-93. https://doi.org/10.1061/(ASCE)GT.1943-5606.0000405
  4. Kim, J. H., Yoon, H. K., Jung, S. H. and Lee, J. S. (2009), Development and verification of 4-electrode resistivity probe, Journal of the Korean Society of Civil Engineers, Vol. 29, No. 3C, pp. 127-136 (in Korean).
  5. Lee, J. S., Fernandez, A. L. and Santamarina, J. C. (2005), S-wave velocity tomography: small-scale laboratory application, Geotechnical Testing Journal, Vol. 28, No. 4, pp. 336-344.
  6. Lee, J. S. and Santamarina, J. C. (2005), Bender elements: performance and signal interpretation", Journal of Geotechnical and Geoenvironmental Engineering, Vol. 131, No. 9, pp. 1063-1070. https://doi.org/10.1061/(ASCE)1090-0241(2005)131:9(1063)
  7. Lee, J. S. and Santamarina, J. C. (2007), Seismic monitoring short-duration events - liquefaction in 1g models, Canadian Geotechnical Journal, Vol. 44, No. 6, pp. 659-672. https://doi.org/10.1139/t07-020
  8. Lin, Y. B., Lai, J. S., Chang, K. C. and Li, L. S. (2006), Flood scour monitoring system using fiber bragg grating sensors, Smart Materials and Structures, Vol. 15, No. 6, pp. 1950-1959. https://doi.org/10.1088/0964-1726/15/6/051
  9. Park, K., Byun, Y. H., Choi, C. H. and Lee, J. S. (2013), Scour evaluation of offshore foundations by using ultrasonic reflection images and natural frequency variation, Journal of Korean Society of Hazard Mitigation, Vol. 13, No. 2, pp. 125-132 (in Korean). https://doi.org/10.9798/KOSHAM.2013.13.2.125
  10. Santamarina, J. C. and Fratta, D. (1998), Introduction to discrete signal and inverse problems in civil engineering, ASCE Press, pp. 269-315.
  11. Truong, Q. H., Lee, C., Cho, G. C. and Lee, J. S. (2010), Geophysical monitoring techniques for underwater landslide in 1g models, Journal of Environmental and Engineering Geophysics, Vol. 15, No. 1, pp. 1-19. https://doi.org/10.2113/JEEG15.1.1
  12. Yeo, W. K., Lee, H., Kim, J. H. and Kwak, M. S. (2006), An interdisciplinart study on the scour depth estimation of Incheon bridge, Korea Water Resources Association Annual Conference 2005, Korea Water Resources Association, pp. 562-566 (in Korean).
  13. Yoon, H. K., Jung, S. H. and Lee, J. S. (2011), Characterization of subsurface spatial variability by cone resistivity penetrometer, Soil Dynamics and Earthquake Engineering, Vol. 31, No. 7, pp. 1064-1071. https://doi.org/10.1016/j.soildyn.2011.03.012
  14. Zhou, Z., Huang, M., Huang, L., Ou, J. and Chen, Genda (2011), An optical fiber grating sensing system for scour monitoring, Advances in Structure Engineering, Vol. 14, No. 1, pp. 67-78. https://doi.org/10.1260/1369-4332.14.1.67