DOI QR코드

DOI QR Code

Kinetic Study on Char-CO2 Catalytic Gasification of an Indonesian lignite

인도네시아 갈탄의 촤-CO2 촉매가스화 반응특성연구

  • Lee, Do Kyun (Department of Applied Chemistry and Biological Engineering, Chungnam National University) ;
  • Kim, Sang Kyum (Graduate school of Energy Science and Technology, Chungnam National University) ;
  • Hwang, Soon Choel (Graduate school of Energy Science and Technology, Chungnam National University) ;
  • Lee, Si Hoon (Korea Institute of Energy Research) ;
  • Rhee, Young Woo (Graduate school of Energy Science and Technology, Chungnam National University)
  • 이도균 (충남대학교 바이오응용화학과) ;
  • 김상겸 (충남대학교 에너지과학기술대학원) ;
  • 황순철 (충남대학교 에너지과학기술대학원) ;
  • 이시훈 (한국에너지기술연구원) ;
  • 이영우 (충남대학교 에너지과학기술대학원)
  • Received : 2014.01.24
  • Accepted : 2014.02.21
  • Published : 2014.08.01

Abstract

In this study, We have investigated the kinetics on the char-$CO_2$ gasification reaction. Thermogravimetric analysis (TGA) experiments were carried out for char-$CO_2$ catalytic gasification of an Indonesian Roto lignite. $Na_2CO_3$, $K_2CO_3$, $CaCO_3$ and dolomite were selected as catalyst which was physical mixed with coal. The char-$CO_2$ gasification reaction showed rapid an increase of carbon conversion rate at 60 vol% $CO_2$ and 7 wt% $Na_2CO_3$ mixed with coal. At the isothermal conditions range from $750^{\circ}C$ to $900^{\circ}C$, the carbon conversion rates increased as the temperature increased. Three kinetic models for gas-solid reaction including the shrinking core model (SCM), volumetric reaction model (VRM) and modified volumetric reaction model (MVRM) were applied to the experimental data against the measured kinetic data. The gasification kinetics were suitably described by the MVRM model for the Roto lignite. The activation energies for each char mixed with $Na_2CO_3$ and $K_2CO_3$ were found a 67.03~77.09 kJ/mol and 53.14~67.99 kJ/mol.

본 연구는 인도네시아 갈탄인 로토(Roto) 탄의 촤(char)-$CO_2$ 촉매가스화 kinetic 분석을 열중량분석기(thermogravimetric analysis, TGA)를 이용하여 수행하였다. 촉매는 $Na_2CO_3$, $K_2CO_3$, $CaCO_3$ 및 천연광물 촉매로 dolomite을 선정하였으며, 석탄과 촉매의 물리적 혼합을 통하여 촤를 제조하였다. 촤-$CO_2$ 촉매가스화반응은 $850^{\circ}C$에서 $CO_2$ 농도가 60 vol%, 촉매 함량은 $Na_2CO_3$를 7 wt% 혼합할 때 가장 빠른 탄소전환율을 보여주었다. $750{\sim}900^{\circ}C$ 등온조건에서 촤-$CO_2$ 촉매 가스화 반응결과, 온도가 증가할수록 탄소전환율 속도가 빨라졌으며, 기-고체 반응모델 shrinking core model(SCM), volumetric reaction model(VRM), modified volumetric reaction model(MVRM)을 실험결과에 적용하였을 때, MVRM 이 로토 탄의 가스화반응 거동을 잘 예측하였다. 특히 Arrhenius plot을 통한 활성화에너지는 $Na_2CO_3$$K_2CO_3$를 혼합한 촤의 활성화에너지가 각각 67.03~77.09 kJ/mol, 53.14~67.99 kJ/mol으로 우수한 촉매 활성을 보여주었다.

Keywords

References

  1. Kang, S. H., Lee, S. J., Jung W. H., Chung, S. W., Yun, Y. S., Jo, S. H., Park, Y. C. and Baek, J. I., "Performance of a Coal Gasification Pilot Plant with Hot Fuel Gas Desulfurization," Korean J. Chem. Eng., 30(1), 67-72(2013). https://doi.org/10.1007/s11814-012-0084-2
  2. Gong, S. J., Zhu, X., Kim, Y. J., Song, B. H., Yang, W., Moon, W. S. and Byoun, Y. S., "A Kinetic Study of Steam Gasification of Low Rank Coal, Wood Chip and Petroleum Coke," Korean Chem. Eng. Res., 48(1), 80-87(2010).
  3. Lee, S. H. and Kim, S. D., "Technology for the Preparation of Ash-free Coal from Low Rank Coal (LRC)," Korean Chem. Eng. Res., 46(3), 443-450(2008).
  4. Kim, Y. T., Seo, D. K. and Hwang, J. H., "The Effect of Coal Particle Size On Char-$CO_2$ Gasification Reactivity by Gas Analysis," Korean Chem. Eng. Res., 49(3), 372-380(2011). https://doi.org/10.9713/kcer.2011.49.3.372
  5. Ochoa, J., Cassanello, M. C., Bonelli, P. R. and Cukierman, A. L., "$CO_2$ Gasification of Argentinean Coal Chars: A Kinetic Characterization," Fuel Process. Technol., 74(3), 161-176(2001). https://doi.org/10.1016/S0378-3820(01)00235-1
  6. Ye, D. P., Agnew, J. B. and Zhang, D. K., "Gasification of a South Australian Low-Rank Coal with Carbon Dioxide and Steam: Kinetics and Reactivity Studies," Fuel, 77(11), 1209-1219(1998). https://doi.org/10.1016/S0016-2361(98)00014-3
  7. Trommer, D. and Steinfeld, A., "Kinetic Modeling for the Combined Pyrolysis and Steam Gasification of Petroleum Coke and Experimental Determination of the Rate Constants by Dynamic Thermogravimetry in the 500-1520K Range," Energy Fuels, 20(3), 1250-1258(2006). https://doi.org/10.1021/ef050290a
  8. Sun, Z. Q., Wu, I. H. and Zhang, D., "$CO_2$ and $H_2O$ Gasification Kinetics of a Coal Char in the Presence of Methane," Energy Fuels, 22(4), 2160-2165(2008). https://doi.org/10.1021/ef8000949
  9. Spiro, C. L., McKee, D. W., Kosky, P. G. and Lamby, E. J., "Catalytic $CO_2$-Gasification of Graphite Versus Coal Char," Fuel, 62(2), 180-184(1983). https://doi.org/10.1016/0016-2361(83)90194-1
  10. Park, S. T., Choi, Y. T. and Sohn, J. M., "The Study of $CO_2$ Gasification of Low Rank Coal Impregnated by $K_2CO_3$, $Mn(NO_3)_2$, and $Ce(NO_3)_3$," J. Ind. Eng. Chem., 22(3), 312-318(2011).
  11. Korea Resource Corporation, "State of Mineral Reserves," 20-21(2009).
  12. Kim, Y. T., Seo, D. K. and Hwang, J. H., "Characteristics of Various Ranks of Coal Gasification with $CO_2$ by Gas Analysis," Journal of the Korean Society of Combustion, 15(2), 41-49(2010).
  13. Park, J. Y., Lee, D. K., Hwang, S. C., Kim, S. K., Lee, S. H., Yoon, S. K., Yoo, J. H., Lee, S. H. and Rhee, Y. W., "Comparative Modeling of Low Temperature Char-$CO_2$ Gasification Reaction of Drayton Coal by Carbon Dioxide Concentration," Clean Technology, 19(3), 306-312(2013). https://doi.org/10.7464/ksct.2013.19.3.306
  14. Wen, C. Y., "Noncatalytic Heterogeneous Solid-fluid Reaction Models," Ind. & Eng. Chem., 60(9), 34-54(1968).
  15. Ishida, M. and Wen, C. Y., "Comparison of Kinetic and Diffusional Models for Solid-gas Reactions," AIChE J., 14(2), 311-317(1968). https://doi.org/10.1002/aic.690140218
  16. Kasaoka, S., Sakata, Y. and Tong, C., "Kinetic Evaluation of the Reactivity of Various Coal Chars for Gasification with Carbon Dioxide in Comparison with Steam," Int. Chem. Eng., 25(1), (1985).
  17. Jaffri, G.-E.-R. and Zhang, J., "Investigation on Steam Gasification of High-metamorphous Anthracite Using Mixed Black Liquor and Calcium Catalyst," Chin. J. Chem. Eng., 16(4), 575-583(2008). https://doi.org/10.1016/S1004-9541(08)60124-X
  18. Li, S. and Cheng, Y., "Catalytic Gasification of Gas-coal Char in $CO_2$," Fuel, 74(3), 456-458(1995). https://doi.org/10.1016/0016-2361(95)93482-S
  19. Choi, Y. K., Moon, S. H., Lee, H. I., Lee, W. Y. and Lee, H. K., "Kinetics of Steam Gasification of Various Coal Chars Catalyze by Alkali Metal," Korean Chem. Eng. Res., 30(4), 415-422(1992).
  20. Mckee, D. W., "Mechanisms of the Alkali Metal Catalysed Gasification of Carbon," Fuel, 62(2), 170-175(1983). https://doi.org/10.1016/0016-2361(83)90192-8
  21. Dutta, S., Wen, C. Y. and Belt, R. J., "Reactivity of Coal and Char. 1. In Carbon Dioxide Atmosphere," Ind. Eng. Chem, Process Des. Dev., 16(1), 20-30(1977). https://doi.org/10.1021/i260061a004
  22. Song, B. H., Kang, S. K. and Kim, S. D., "Catalytic Activity of K-Fe, Na-Fe, Na-Fe-Ca Mixtures on Char-Steam Gasification," Korean Chem. Eng. Res., 30(6), 749-759(1992).
  23. Wen, W. Y., "Mechanisms of Alkali Metal Catalysis in the Gasification of Coal, Char, or Graphite," Catal. Rev., 22(1), 1-28(1980). https://doi.org/10.1080/03602458008066528
  24. Wood, B. J., Fleming, R. H. and Wise, H., "Reactive Intermediate in the Alkali-carbonate-catalysed Gasification of Coal Char," Fuel, 63(11), 1600-1603(1984). https://doi.org/10.1016/0016-2361(84)90234-5
  25. Pigford, R. L. and Sliger, G., "Rate of Diffusion-Controlled Reaction Between a Gas and a Porous Solid Sphere-Reaction of $SO_2$ with $CaCO_3$," Ind. Eng. Chem. Process Des. Dev., 12(1), 85-91(1973). https://doi.org/10.1021/i260045a017
  26. Elliott and Anderson, M., "Chemistry of Coal Utilization. Second Supplementary Volume," (1981).
  27. Ahn, D. H., Gibbs, B. M., Ko, K. H. and Kim, J. J., "Gasification Kinetics of an Indonesian Sub-bituminous Coal-char with $CO_2$ at Elevated Pressure," Fuel, 80(11), 1651-1658(2001). https://doi.org/10.1016/S0016-2361(01)00024-2
  28. Zhang, L., Huang, J., Fang, Y. and Wang, Y., "Gasification Reactivity and Kinetics of Typical Chinese Anthracite Chars with Steam and $CO_2$," Energy Fuels, 20(3), 1201-1210(2006). https://doi.org/10.1021/ef050343o
  29. Tangsathitkulchai, C., Junpirom, S. and Katesa, J., "Comparison of Kinetic Models for $CO_2$ Gasification of Coconut-Shell Chars: Carbonization Temperature Effects on Char Reactivity and Porous Properties of Produced Activated Carbons," Engineering Journal, 17(1), 13-28(2012).
  30. McKee, D. W., "Gasification of Graphite in Carbon Dioxide and Water Vapor - the catalytic Effects of Alkali Metal Salts," Carbon, 20(1), 59-66(1982). https://doi.org/10.1016/0008-6223(82)90075-6
  31. Sams, D. A., Talverdian, T. and Shadman, F., "Kinetics of Catalyst Loss During Potassium-catalysed $CO_2$ Gasification of Carbon," Fuel, 64(9), 1208-1214(1985). https://doi.org/10.1016/0016-2361(85)90176-0
  32. Li, S. and Cheng, Y., "Catalytic Gasification of Gas-coal Char in $CO_2$," Fuel, 74(3), 456-458(1995). https://doi.org/10.1016/0016-2361(95)93482-S

Cited by

  1. Gasification Reaction at Various temperature vol.53, pp.6, 2015, https://doi.org/10.9713/kcer.2015.53.6.746
  2. 기-고체 반응 모델을 이용한 Kideco탄의 이산화탄소 촉매 석탄가스화 반응 특성 vol.21, pp.1, 2015, https://doi.org/10.7464/ksct.2015.21.1.053