DOI QR코드

DOI QR Code

Adsorption Behavior and Kinetic Characteristic of Cibacron Brilliant Red 3B-A by Granular Activated Carbon

입상활성탄에 의한 Cibacron Brilliant Red 3B-A의 흡착거동 및 동력학적 특성

  • Lee, Jong Jib (Division of chemical Engineering, Kongju National University)
  • 이종집 (공주대학교 화학공학부)
  • Received : 2014.01.29
  • Accepted : 2014.03.18
  • Published : 2014.08.01

Abstract

In this paper, the adsorption behavior and kinetic characteristics of cibacron brilliant red 3B-A from aqueous solution using granular activated carbon were investigated. The effect of various parameters such as adsorbent dose, pH, initial concentration, contact time and temperature on the adsorption system were studied. Base on the estimated Langmuir constant ($R_L$) and Freundlich constant (1/n), This process could be employed as effective treatment method. From the Temkin constant (B) and Dubinin-Radushkevich constant (E), This adsorption process is physical adsorption. From kinetic experiments, the adsorption process followed the pseudo second order model with good correlation. Base on the Gibbs free energy and enthalpy, the adsorption of cibacron brilliant red 3B-A onto granular activated carbon was physisorption and endothermic in nature.

본 연구는 입상활성탄을 사용하여 수용액으로부터 cibacron brilliant red 3B-A의 흡착 거동과 동력학적 특성에 대해 회분식 실험을 통해 알아보았다. 흡착변수로는 흡착제의 양, pH, 초기농도와 접촉시간과 온도를 사용하였다. 평가된 Langmuir 상수($R_L$)과 Freundlich 상수(1/n)로부터 활성탄에 의한 cibacron brilliant red 3B-A의 흡착조작이 적절한 처리방법이 될 수 있음을 알았고, Temkin 상수(B)와 Dubinin-Radushkevich 상수(E)로부터 물리흡착공정임을 알았다. 흡착공정에 대한 동력학적 해석을 통해 반응속도식의 적용결과는 유사이차반응속도식에 잘 맞는 것으로 나타났다. Gibbs 자유에너지와 엔탈피값으로부터 입상활성탄에 대한 cibacron brilliant red 3B-A의 흡착은 자발적인 물리흡착 및 흡열과정으로 진행되었다.

Keywords

References

  1. Vijaya, Kumar, G., Ramalingam, P., Kim, M. J., Yoo, C. K. and Kumar, M. D., "Removal of Acid Dye (violet 54) and Adsorption Kinetics Model of Using Musa spp. Waste: A Low-cost Natural Sorbent Material," Korean J. Chem. Eng., 27(5), 1469-1475(2010). https://doi.org/10.1007/s11814-010-0226-3
  2. Mahanta, D., Madras, G., Rdhakrishnan, S. and Patil, S., "Adsorption and Desortption Kinetics of Anionic Dyes on Doped Polyaniline," J. Phys. Chem., 112B, 10153-10157(2008).
  3. Chen, W., Lu, W., Yao, Y. and Xu, M., "Highly Efficient Decomposition of Organic Dyes by Aqueous-fiber Phase Transfer and in Situ Catalytic Oxidation Using Fiber-supported Cobalt Phthalocyanine," Environ. Sci. Technol., 41, 6240-6245(2007). https://doi.org/10.1021/es070002k
  4. Wong, Y., Szeto, Y. Cheung, W. and McKay, G., "Equilibrium Studies for Acid Dye Adsorption onto Chitosan," Langmuir, 19, 7888-7894(2003). https://doi.org/10.1021/la030064y
  5. Lee, J. I., Park, J. H., Beum, H. T., Yi, K. B., Ko, C. H., Park, S. Y., Lee, Y. T. and Kim, J. N., "Adsorption and Desorption Dynamics of Ethane and Ethylene in Displacement Desorption Process using Faujasite Zeolite," Korean Chem. Eng. Res., 48(6), 768-775(2010).
  6. Samiey, B. and Toosi, A., "Kinetics and Thermodynamics Adsorption of Congo Red on Cellulose," Central Eur. J. Chem., 8, 906-912(2010). https://doi.org/10.2478/s11532-010-0055-6
  7. Srivastava, V. C. and Agarwal, N. K., "Removal of Orang-G and Methyl Violet Dyes by Adsorption onto Bagasse Fly Ash-kinetic Study and Equilibrium Isotherm Analyses," Dyes Pig., 69(3), 210-223(2006). https://doi.org/10.1016/j.dyepig.2005.03.013
  8. Blackburm, R., "Natural Polysaccarides and their Interaction with Dye Molecules: Applications in Effluent Tretment," Environ. Sci. Technol., 38, 4905-4909(2004). https://doi.org/10.1021/es049972n
  9. Nawi, M. A., Sabar, S. Jawad, A. H., Sheilatina, W. S. and Ngah, W., "Adsorption of Reactive Red 4 by Immobilized Chitosan on Glass Plates: Towards the Design of Immobilized $TiO_2$ Chitosan Synergistic Photocatalyst-adsorption," Biochem. Eng. J., 40, 317-325 (2010).
  10. Won, S. W., Wu, G., Ma, H., Liu, Q., Yah, Y., Cui, L., Liu, C. and Yun, Y. S., "Adsorption Performance and Mechanism in Binding of Reactive Red 4 by Coke Waste," J. Hazard. Mater., B138, 370-317(2006).
  11. Weber, T. W. and Chakrabarti, R. K., "Pore and Solid Diffusion Kinetics in Fixed Bed Adsorption Under Constant Pattern Conditions," Ind. Chem. Eng. Fund., 5, 212-223(1996).
  12. Tan, I. A. W., Ahmad, A. L. and Hameed, B. H, "Adsorption of Basic Dye on High-Surface-Area Activated Carbon Prepared from Coconut Husk," J. Hazard. Mater., 154, 337-346(2008). https://doi.org/10.1016/j.jhazmat.2007.10.031
  13. Sivakumar, P. and Palanisamy, P. N., "Adsorption Studies of Basic Red 29 by a Non Conventional Activated Carbon Prepared from Euphorbia Antiquorum L," Int. J. Chem. Tech. Res., 1(3), 502-510 (2009).
  14. Dubinin, M. M. and Zaverina, E. D., and Radushkevich, L. V., "Sorption and Structure of Active Carbons," J. Phy. Chem, 21, 1351-1362(1947).
  15. Monika, J., Garg, V. and Kadirvelu, D K., "Chromium (VI) Removal from Aqueous Solution, Using Sunflower Stem Waste," J. Hazard. Mater., 162, 365-372(2009). https://doi.org/10.1016/j.jhazmat.2008.05.048
  16. Zhang, Li, Y., Zhang, C. and Jing, Y., "Adsorption of Malachite Green from Aqeous Solution onto Carbon Prepared from Arundo Donax Root," J. Hazard. Mater., 150, 774-782 (2008). https://doi.org/10.1016/j.jhazmat.2007.05.036
  17. Jaycock, M. J. and Parfitt, G. D., Chemistry of interfaces, Ellis Horwood Ltd., Chichester(1981).
  18. Dorgan, M., Alkan, M., Demirbas, O., Ozdemir, Y. and Ozmetin, C., "Adsorption Kinetics of MaxilonBlue GRL onto Sepiolite from Aqueous Solutions," Chem. Eng. J., 124, 89-101(2006). https://doi.org/10.1016/j.cej.2006.08.016

Cited by

  1. Isotherm, Kinetic and Thermodynamic Characteristics for Adsorption of Congo Red by Activated Carbon vol.53, pp.1, 2015, https://doi.org/10.9713/kcer.2015.53.1.64